
IBM Tivoli Directory Server

Performance Tuning and Capacity
Planning Guide
Version 6.3

SC27-2748-00

���

IBM Tivoli Directory Server

Performance Tuning and Capacity
Planning Guide
Version 6.3

SC27-2748-00

���

This edition applies to version 6, release 3, of IBM Tivoli Directory Server and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2003, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book v
Intended audience for this book v
Publications v

IBM Tivoli Directory Server version 6.3 library . . v
Related publications vi
Accessing terminology online vi
Accessing publications online vi
Ordering publications vii

Accessibility vii
Tivoli technical training vii
Tivoli user groups vii
Support information viii
Conventions used in this book. viii

Typeface conventions viii
Operating system-dependent variables and paths ix

Chapter 1. IBM Tivoli Directory Server
tuning general overview 1
IBM Tivoli Directory Server application components 1

LDAP caches and DB2 buffer pools 2
IBM Tivoli Directory Server tuning overview . . . 3
DB2 tuning overview 3
Performance impact due to multiple password policy 4
Enforcing minimum ulimits 4
Generic LDAP application tips 5

Chapter 2. IBM Tivoli Directory Server
tuning 7
LDAP caches 7

LDAP attribute cache 7
LDAP filter cache 11
Entry cache 13
ACL cache. 14

Measuring cache entry sizes 15
LDAP cache configuration variables 15

Configuring attribute caching 16
Setting other LDAP cache configuration variables 17

Setting SLAPD_OCHSELECT_USECS. 19
Directory size. 20

Chapter 3. Tuning DB2 and LDAP
caches. 23
Tuning DB2 buffer pool 24

DB2 buffer pool analysis 25
Tuning DB2 transaction log size 27
Tuning database connections 28
The performance tuning tool (idsperftune) 28

Basic tuning 28
Advanced tuning 30
Perftune input file (perftune_input.conf) 33
Perftune statistics file (perftune_stat.log) 34

The database maintenance tool (idsdbmaint) . . . 36
Tablespaces 36
DB2 index reorganization. 37

DB2 row compression 38
Tablespace conversion 38

Optimization and organization (idsrunstats,
reorgchk and reorg) 40

Optimization 40
Viewing DB2 system statistics settings 41
Database organization (reorgchk and reorg) . . 41

DB2 indexes 45
DB2 SELECTIVITY 46

Examples 47
Other DB2 configuration parameters 47
Database backup and restore considerations . . . 49

Chapter 4. AIX operating system tuning 51
Enabling large files 51
Setting MALLOCTYPE 51
Setting other environment variables 52
Viewing ibmslapd environment variables (AIX
operating system only) 52

Chapter 5. Hardware tuning 55
Disk speed improvements 55

Chapter 6. IBM Tivoli Directory Server
features 57
Bulkload 57

Effects of using the -k option 57
Replication tuning 59

Number of replication threads 60
Replication context cache size 60
Replication ready size limit 61

Tuning Tivoli Directory Server audit log 62
IBM Directory Proxy Server tuning 62
Monitoring performance 63

ldapsearch with "cn=monitor" 63
ldapsearch with "cn=workers,cn=monitor" . . . 68
ldapsearch with "cn=connections,cn=monitor" . . 68
ldapsearch with "cn=changelog,cn=monitor" . . 69

When to configure Tivoli Directory Server change
log 69

Chapter 7. Capacity Planning 71
Disk requirements 72

Bulkload time and space information 72
Memory requirements 76
CPU requirements 76

CPU scaling comparison for throughput (searches
and updates) 76
Splitting the database across multiple disks. . . 78

Simultaneous multithreading 79
SMT on AIX FAQs 79

Appendix A. Workload description . . . 81

© Copyright IBM Corp. 2003, 2010 iii

Appendix B. Modifying TCP/IP settings 83

Appendix C. Platform configurations 85

Appendix D. Notices 87

Trademarks 89

Index 91

iv Performance Tuning and Capacity Planning Guide

About this book

IBM® Tivoli® Directory Server is the IBM implementation of Lightweight Directory
Access Protocol for supported Windows®, AIX®, Linux® (System x®, System z®,
System p®, and System i®), Solaris, and Hewlett-Packard UNIX® (HP-UX)
(Itanium®) operating systems.

IBM Tivoli Directory Server Version 6.3 Performance Tuning and Capacity Planning
Guide contains information about tuning the directory server for better
performance.

Intended audience for this book
This book is for system administrators, network administrators, information
technology architects, and application developers.

Readers need to know how to use the operating system on which IBM Tivoli
Directory Server will be installed.

Publications
This section lists publications in the IBM Tivoli Directory Server version 6.3 library
and related documents. The section also describes how to access Tivoli publications
online and how to order Tivoli publications.

IBM Tivoli Directory Server version 6.3 library
The following documents are available in the IBM Tivoli Directory Server version
6.3 library:
v IBM Tivoli Directory Server Version 6.3 What is New for This Release, GC27-2746-00

Provides information about the new features in the IBM Tivoli Directory Server
Version 6.3 release.

v IBM Tivoli Directory Server Version 6.3 Quick Start Guide, GI11-9351-00
Provides help for getting started with IBM Tivoli Directory Server 6.3. Includes a
short product description and architecture diagram, as well as a pointer to the
product Information Center and installation instructions.

v IBM Tivoli Directory Server Version 6.3 System Requirements, SC27-2755-00
Contains the minimum hardware and software requirements for installing and
using IBM Tivoli Directory Server 6.3 and its related software. Also lists the
supported versions of corequisite products such as DB2® and GSKit.

v IBM Tivoli Directory Server Version 6.3 Installation and Configuration Guide,
SC27-2747-00
Contains complete information for installing, configuring, and uninstalling IBM
Tivoli Directory Server. Includes information about upgrading from a previous
version of IBM Tivoli Directory Server.

v IBM Tivoli Directory Server Version 6.3 Administration Guide, SC27-2749-00
Contains instructions for performing administrator tasks through the Web
Administration Tool and the command line.

v IBM Tivoli Directory Server Version 6.3 Command Reference, SC27-2753-00

© Copyright IBM Corp. 2003, 2010 v

Describes the syntax and usage of the command-line utilities included with IBM
Tivoli Directory Server.

v IBM Tivoli Directory Server Version 6.3 Server Plug-ins Reference, SC27-2750-00
Contains information about writing server plug-ins.

v IBM Tivoli Directory Server Version 6.3 Programming Reference, SC27-2754-00
Contains information about writing Lightweight Directory Access Protocol
(LDAP) client applications in C and Java™.

v IBM Tivoli Directory Server Version 6.3 Performance Tuning and Capacity Planning
Guide, SC27-2748-00
Contains information about tuning the directory server for better performance.
Describes disk requirements and other hardware needs for directories of
different sizes and with various read and write rates. Describes known working
scenarios for each of these levels of directory and the disk and memory used;
also suggests rough rules of thumb.

v IBM Tivoli Directory Server Version 6.3 Problem Determination Guide, GC27-2752-00
Contains information about possible problems and corrective actions that can be
taken before contacting IBM Software Support.

v IBM Tivoli Directory Server Version 6.3 Messages Guide, GC27-2751-00
Contains a list of all informational, warning, and error messages associated with
IBM Tivoli Directory Server 6.3.

v IBM Tivoli Directory Server Version 6.3 White Pages, SC27-2756-00
Describes the Directory White Pages application, which is provided with IBM
Tivoli Directory Server 6.3. Contains information about installing, configuring,
and using the application for both administrators and users.

Related publications
The following documents also provide useful information:
v Java Naming and Directory Interface™ 1.2.1 Specification on the Sun Microsystems

Web site at http://java.sun.com/products/jndi/1.2/javadoc/index.html.
IBM Tivoli Directory Server Version 6.1 and above versions use the Java Naming
and Directory Interface (JNDI) client from Sun Microsystems. See this document
for information about the JNDI client.

Accessing terminology online
The IBM Terminology Web site consolidates the terminology from IBM product
libraries in one convenient location. You can access the Terminology Web site at the
following Web address:

http://www.ibm.com/software/globalization/terminology

Accessing publications online
IBM posts publications for this and all other Tivoli products, as they become
available and whenever they are updated, to the Tivoli Information Center Web
site at http://publib.boulder.ibm.com/tividd/td/link/tdprodlist.html.

In the Tivoli Information Center window, click Tivoli product manuals. Click the
letter that matches the first letter of your product name to access your product
library. For example, click M to access the IBM Tivoli Monitoring library or click O
to access the IBM Tivoli OMEGAMON® library.

vi Performance Tuning and Capacity Planning Guide

http://java.sun.com/products/jndi/1.2/javadoc/index.html
http://www.ibm.com/software/globalization/terminology
http://publib.boulder.ibm.com/tividd/td/link/tdprodlist.html

IBM posts publications for this and all other Tivoli products, as they become
available and whenever they are updated, to the Tivoli Documentation Central
Web site at http://www.ibm.com/tivoli/documentation.

Note: If you print PDF documents on other than letter-sized paper, set the option
in the File → Print window that allows Adobe® Reader to print letter-sized
pages on your local paper.

Ordering publications
You can order many Tivoli publications online at http://www.ibm.com/e-
business/linkweb/publications/servlet/pbi.wss.

You can also order by telephone by calling one of these numbers:
v In the United States: 800-879-2755
v In Canada: 800-426-4968

In other countries, contact your software account representative to order Tivoli
publications. To locate the telephone number of your local representative, perform
the following steps:
1. Go to http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss.
2. Select your country from the list and click Go.
3. Click About this site in the main panel to see an information page that

includes the telephone number of your local representative.

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully. With this product,
you can use assistive technologies to hear and navigate the interface. You can also
use the keyboard instead of the mouse to operate all features of the graphical user
interface.

Visit the IBM Accessibility Center at http://www.ibm.com/alphaworks/topics/
accessibility/ for more information about IBM's commitment to accessibility.

For additional information, see the Accessibility Appendix in the IBM Tivoli
Directory Server Version 6.3 Installation and Configuration Guide.

Tivoli technical training
For Tivoli technical training information, refer to the following IBM Tivoli
Education Web site at http://www.ibm.com/software/tivoli/education.

Tivoli user groups
Tivoli user groups are independent, user-run membership organizations that
provide Tivoli users with information to assist them in the implementation of
Tivoli Software solutions. Through these groups, members can share information
and learn from the knowledge and experience of other Tivoli users. Tivoli user
groups include the following members and groups:
v 23,000+ members
v 144+ groups

About this book vii

http://www.ibm.com/tivoli/documentation
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.ibm.com/alphaworks/topics/accessibility/
http://www.ibm.com/alphaworks/topics/accessibility/
http://www.ibm.com/software/tivoli/education

Access the link for the Tivoli Users Group at www.tivoli-ug.org.

Support information
If you have a problem with your IBM software, you want to resolve it quickly. IBM
provides the following ways for you to obtain the support you need:

Online
Access the Tivoli Software Support site at http://www.ibm.com/software/
sysmgmt/products/support/index.html?ibmprd=tivman. Access the IBM
Software Support site at http://www.ibm.com/software/support/
probsub.html .

IBM Support Assistant
The IBM Support Assistant is a free local software serviceability workbench
that helps you resolve questions and problems with IBM software
products. The Support Assistant provides quick access to support-related
information and serviceability tools for problem determination. To install
the Support Assistant software, go to http://www.ibm.com/software/
support/isa.

Troubleshooting Guide
For more information about resolving problems, see the IBM Tivoli
Directory Server Version 6.3 Problem Determination Guide.

Conventions used in this book
This book uses several conventions for special terms and actions, operating
system-dependent commands and paths, and margin graphics.

Typeface conventions
This book uses the following typeface conventions:

Bold

v Lowercase commands and mixed case commands that are otherwise
difficult to distinguish from surrounding text

v Interface controls (check boxes, push buttons, radio buttons, spin
buttons, fields, folders, icons, list boxes, items inside list boxes,
multicolumn lists, containers, menu choices, menu names, tabs, property
sheets), labels (such as Tip:, and Operating system considerations:)

v Keywords and parameters in text

Italic

v Citations (examples: titles of books, diskettes, and CDs)
v Words defined in text (example: a nonswitched line is called a

point-to-point line)
v Emphasis of words and letters (words as words example: "Use the word

that to introduce a restrictive clause."; letters as letters example: "The
LUN address must start with the letter L.")

v New terms in text (except in a definition list): a view is a frame in a
workspace that contains data.

v Variables and values you must provide: ... where myname represents....

Monospace

v Examples and code examples

viii Performance Tuning and Capacity Planning Guide

www.tivoli-ug.org
http://www.ibm.com/software/sysmgmt/products/support/index.html?ibmprd=tivman
http://www.ibm.com/software/sysmgmt/products/support/index.html?ibmprd=tivman
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/isa
http://www.ibm.com/software/support/isa

v File names, programming keywords, and other elements that are difficult
to distinguish from surrounding text

v Message text and prompts addressed to the user
v Text that the user must type
v Values for arguments or command options

Operating system-dependent variables and paths
This book uses the UNIX convention for specifying environment variables and for
directory notation.

When using the Windows command line, replace $variable with % variable% for
environment variables and replace each forward slash (/) with a backslash (\) in
directory paths. The names of environment variables are not always the same in
the Windows and UNIX environments. For example, %TEMP% in Windows
environments is equivalent to $TMPDIR in UNIX environments.

Note: If you are using the bash shell on a Windows system, you can use the UNIX
conventions.

About this book ix

x Performance Tuning and Capacity Planning Guide

Chapter 1. IBM Tivoli Directory Server tuning general
overview

This guide provides tuning information for IBM Tivoli Directory Server and the
related IBM Database 2 (DB2) database. IBM Tivoli Directory Server is a
Lightweight Directory Access Protocol (LDAP) directory that provides a layer on
top of DB2, allowing users to efficiently organize, manipulate, and retrieve data
stored in the DB2 database. Tuning for optimal performance is primarily a matter
of adjusting the relationships between the LDAP server and DB2 according to the
nature of your workload.

Because each workload is different, instead of providing exact values for tuning
settings, guidelines are provided, where appropriate, for how to determine the best
settings for your system.

Attention: Measurements in this guide were captured in a lab environment. The
workload driving this test included a mixture of searches and binds, including
wildcard searches which return multiple entries. Your results might differ from the
lab results shown in this guide.

IBM Tivoli Directory Server application components
The following figure illustrates how IBM Tivoli Directory Server components
interact with each other. Tuning these components can result in improved
performance.

The arrows in Figure 1 represent the path of a query issued from a client computer.
The query follows a path from the IBM Tivoli Directory Server client to the LDAP
server, to DB2, to the physical disks in search of entries that match the query's
search filter settings. The shorter the path to matching entries, the better overall
performance you can expect from your system.

For example, if a query locates all the matching entries in the LDAP server, access
to DB2 and the disks is not necessary. If the matching entries are not found in the

Figure 1. IBM Tivoli Directory Server

© Copyright IBM Corp. 2003, 2010 1

LDAP server, the query continues on to DB2 and, if necessary, to the physical disks
as a last resort. Because of the time and resources it takes to retrieve data from
disk, it is better from a performance standpoint to allocate a significant amount of
memory to the LDAP server caches and setting the DB2 buffer pools to
AUTOMATIC.

LDAP caches and DB2 buffer pools
Caches and buffer pools store previously retrieved data and can significantly
improve performance by reducing disk access. When requested data is found
within a cache or buffer pool, it is called a cache hit. A cache miss occurs when
requested data is not located in a cache or buffer pool.

Because the type of information in each cache and buffer pool is different, it is
useful to understand how and when each cache is accessed.

LDAP caches
Search operations attempt to use one or more caches when resolving the search
filter as well as returning the individual matching entries. Most base-scoped
searches can be resolved directly in memory by retrieving the base entry from the
entry cache or the database buffer pool and performing the comparison of the
entry with the filter.

If a base-scoped search cannot be resolved directly in memory or the search is not
base-scoped, an attempt is made to use the attribute cache to resolve the filter in
memory or to use the filter cache to retrieve the results of a previously run search
operation. If LDAP caches cannot be used to resolve the filter, the filter will be
resolved using DB2. When the individual entries are returned to the client, they are
retrieved from memory using the entry cache, if possible. If the individual entries
are not found in the entry cache, they are retrieved from DB2

The four LDAP caches are:
v LDAP attribute cache

Note: Starting with the IBM Tivoli Directory Server 6.3 release, attribute cache is
deprecated. Henceforth, users should avoid using attribute cache.

v LDAP filter cache
v Entry cache
v ACL cache

For more information on these caches, see “LDAP caches” on page 7.

DB2 buffer pools
There are two DB2 buffer pools:

LDAPBP
LDAPBP contains cached entry data (ldap_entry) and all of the associated
indexes. LDAPBP is similar to the entry cache, except that LDAPBP uses
different algorithms in determining which entries are cached. It is possible
that an entry that is not cached in the entry cache is located in LDAPBP. If
the requested data is not found in the entry cache or LDAPBP, the query
must access the physical disks.

IBMDEFAULTBP
DB2 system information, including system tables and other LDAP
information, is cached in the IBMDEFAULTBP.

2 Performance Tuning and Capacity Planning Guide

IBM Tivoli Directory Server tuning overview
Tuning the LDAP server can significantly improve performance by storing useful
data in the caches. It is important to remember, however, that tuning the LDAP
server alone is insufficient. Some tuning of DB2 is also required for optimal
performance.

To get best results it is advisable to tune Tivoli Directory Server instance
immediately after the instance has been configured. If the Tivoli Directory Sever
instance is not tuned, it is likely to perform poorly as the size of directory instance
grows as the entries are added to the instance. Considerations that could be used
as a trigger for tuning a Tivoli Directory Server instance:
v Poor or slow search and update response time, or slow execution time for the

bulkload utility. To prevent poor performance, tune the Tivoli Directory Server at
least one time and subsequently update the DB2 system statistics after any large
number of updates to the server, for example after adding a large number of
entries.

Before tuning Tivoli Directory Server, it is recommended to take backup of the
instance, database, and configuration files. To know more backing up and restoring
Tivoli directory Server instance, see the usage of idsdbback and idsdbrestore
commands in IBM Tivoli Directory Server Version 6.3 Command Reference.

The most significant performance tuning related to the IBM Tivoli Directory Server
involves the LDAP caches. LDAP caches are fast storage buffers in memory used
to store LDAP information such as queries, answers, and user authentication for
future use. While LDAP caches are useful mostly for applications that frequently
retrieve repeated cached information, they can greatly improve performance by
avoiding calls to the database. See “LDAP caches” on page 7 for information about
how to tune the LDAP caches.

DB2 tuning overview
DB2 serves as the data storage component of the IBM Tivoli Directory Server.
Tuning DB2 results in overall improved performance.

This guide contains several recommendations for tuning DB2, but the most
commonly tuned items are:
v DB2 buffer pools – Buffer pools are DB2 data caches. Each buffer pool is a data

cache between the applications and the physical database files. In IBM Tivoli
Directory Server V6.2 and above versions, automatic tuning of buffer pools are
performed by default. See “Tuning DB2 buffer pool” on page 24 for information
about buffer pool tuning.

v Optimization and organization – After initially loading a directory, or after a
number of updates have been performed, it is very important to update
database statistics and organization for DB2 to perform optimally. See
“Optimization and organization (idsrunstats, reorgchk and reorg)” on page 40
for more information.

v Indexes – Indexes can make locating data on disk very fast, providing a
significant boost to performance. For information about how to create indexes,
see “DB2 indexes” on page 45.

Chapter 1. IBM Tivoli Directory Server tuning general overview 3

Attention: You should place the DB2 log on a physical disk drive separate from
the data. For improved data-integrity and performance, have the DB2 log and the
data on separate drives. Use the following command to set the path to the DB2 log
file directory:
DB2 UPDATE DATABASE CONFIGURATION FOR database_alias USING NEWLOGPATH path

Be sure the database instance owner has write access to the specified path or the
command fails. For more information on using DB2 commands, see Chapter 3,
“Tuning DB2 and LDAP caches,” on page 23.

Users can also use the idsperftune utility to improve the performance of the Tivoli
Directory Server, see “The performance tuning tool (idsperftune)” on page 28.

Performance impact due to multiple password policy
To evaluate a user’s effective password policy, the directory server takes into
consideration all the password policies associated with a user. This means that the
directory server evaluates the individual, group, and global password policies to
determine a user’s effective password policy.

If you have defined group password policies, the performance of bind operations
may be degraded. This is because during authentication a user's effective password
policy must be determined, and group membership must be resolved to properly
apply group password policies.

Enforcing minimum ulimits
The directory server tries to enforce minimum ulimit values such process data size,
process virtual memory, and process file size that are considered important for the
smooth running of the server. To accomplish this, the directory server first checks
if the ulimit values for the current processes are greater than or equal to the
prescribed ulimit values specified in the configuration file. In case the ulimit values
for the current processes are lesser than the prescribed values, the server attempts
to set the ulimit values of the current processes to the prescribed values.

On Linux or UNIX operating systems, resource limits are defined for each user.
When a process is started, that process inherits or takes the resource limits of the
user context under which it was started. For example, if the Tivoli Directory Server
process, idsslapd, is started under the root user context, the idsslapd process takes
on the resource limits of the root user. This inheritance occurs even if the process
switches user contexts as the idsslapd process does. The idsslapd process switches
the user context to the DB2 instance owner if the need is to have the idsslapd
process take on the resource limits of the DB2 instance owner. In this case, the
idsslapd process must be started while the DB2 instance owner is logged in.

In Tivoli Directory Server v6.2 and later versions, the directory server sets the
ulimits based on the configuration file. The following entries under the DN entry
cn=Ulimits, cn=Configuration can be used to modify the existing limits:
dn: cn=Ulimits, cn=Configuration
cn: Ulimits
ibm-slapdUlimitDataSegment: 262144
ibm-slapdUlimitDescription: Prescribed minimum ulimit option values
ibm-slapdUlimitFileSize: 2097152
ibm-slapdUlimitNofile: 500
ibm-slapdUlimitStackSize: 10240

4 Performance Tuning and Capacity Planning Guide

ibm-slapdUlimitVirtualMemory: 1048576
objectclass: top
objectclass: ibm-slapdConfigUlimit
objectclass: ibm-slapdConfigEntry

Note: An administrator can modify the minimum ulimit values using the web
administration tool or through command line.

Generic LDAP application tips
The following are some tips that can help improve performance:
v Perform searches on indexed attributes only. See “DB2 indexes” on page 45 for

instructions for defining and verifying indexes for IBM Tivoli Directory Server.
v Open a connection only once and reuse it for many operations if possible.
v Minimize the number of searches by retrieving multiple attribute values at one

time.
v Retrieve only the attributes you need. Do not use ALL by default. For example,

when you search for the groups a user belongs to, ask for only the Distinguished
Names (DNs), and not the entire group. Do not request the member or
uniquemember attributes if possible.

v Minimize and batch updates (add, modify, modrdn, delete) when possible.
v Use base-scoped searches whenever possible rather than one-level or subtree

searches.
v Avoid using wildcard searches where the wildcard is in any position other than

the leading character in a term, or a trailing character. Use wildcard searches
that are similar to the following (leading character):
sn=*term

or the following (trailing character):
sn=term*

Note: A filter such as sn=*term* is less efficient than the examples given.
v When using nested groups, keep the depth of nesting to 50 groups or less.

Greater nesting depths can result in greater processing times when performing
add or delete operations that involve updates to the nested group hierarchy.

v Set server search limits to prevent accidental long-running searches.
v Use the ldap_modify interface to add members to or delete members from a

group. Do not do a search to retrieve all members, edit the returned list, then
send the updated list as a modify-replace operation. This modify-replace
scenario will not perform well with large groups.

v For a proxy server, do not set the value in the Connection pool size field to be
less than 5.

Chapter 1. IBM Tivoli Directory Server tuning general overview 5

6 Performance Tuning and Capacity Planning Guide

Chapter 2. IBM Tivoli Directory Server tuning

This chapter discusses the following performance tuning tasks for the IBM Tivoli
Directory Server:
v Tuning LDAP caches
v Determining how directory size affects performance

LDAP caches
LDAP caches are fast storage buffers in memory used to store LDAP information
such as queries, answers, and user authentication for future use. Tuning the LDAP
caches is crucial to improving performance.

An LDAP search that accesses the LDAP cache can be faster than one that requires
a connection to DB2, even if the information is cached in DB2. For this reason,
tuning LDAP caches can improve performance by avoiding calls to the database.
The LDAP caches are especially useful for applications that frequently retrieve
repeated cached information. See Figure 1 on page 1 for an illustration of the
LDAP caches.

The following sections discuss each of the LDAP caches and demonstrate how to
determine and set the best cache settings for your system. Keep in mind that every
workload is different, and some experimentation will likely be required in order to
find the best settings for your workload.

Note: Cache sizes for the filter cache, ACL cache, and entry cache are measured in
numbers of entries.

LDAP attribute cache

Note: Starting with the IBM Tivoli Directory Server 6.3 release, attribute cache is
deprecated. Henceforth, users should avoid using attribute cache.

The attribute cache stores configured attributes and their values in memory. When
a one-level or sub-tree search is performed, or a base-scoped search is performed
that cannot be resolved directly in memory using the entry cache, the attribute
cache manager resolves the search filter in memory if all attributes used in the
filter are cached and the filter is a type supported by the attribute cache manager.
Resolving filters in memory leads to improved search performance over resolving
filters using DB2.

There are two ways to configure which attributes are to be kept in the attribute
cache. It can be configured to automatically select the attributes expected to
provide the most benefit, see "directory automatic attribute caching" in the section
Configuring attribute caching. Alternatively, the administrator can choose specific
attributes that they wish to be cached. The following section gives some tips on
how to determine the best attributes to keep in the attribute cache.

There are two things that can happen when a query arrives at the attribute cache:
v All attributes used in the search filter are cached and the filter is of a type

that can be resolved by the attribute cache manager. If this is the case, the list
of matching entry IDs is resolved in memory using the attribute cache manager.

© Copyright IBM Corp. 2003, 2010 7

This list of matching IDs is then sent to the entry cache. For this reason, the
attribute cache is most efficient when used in combination with the entry cache
The attribute cache manager can resolve simple filters of the following types:
– exact match filters
– presence filters
The attribute cache manager can also resolve complex filters that are conjunctive
or disjunctive. Additionally, the subfilters within complex filters must be exact
match, presence, conjunctive, or disjunctive.
– exact match filters
– presence filters
– conjunctive filters
– disjunctive filters
Filters containing attributes with language tags are not resolved by the attribute
cache manager.
For example, if the attributes objectclass, uid, and cn are all cached, the
following filters can be resolved in memory within the attribute cache manager:
– (cn=Karla)

– (cn=*)

– (&(objectclass=eperson)(cn=Karla))

– (&(objectclass=eperson)(cn=*)(uid=1234567))

– (&(&(objectclass=eperson)(cn=*))(uid=1234567))

– (&(uid=1234567)(&(objectclass=eperson)(cn=*)))

v Some or all of the attributes used in the search filter are not cached or the
filter is of a type that cannot be resolved by the attribute cache manager. If
this is the case, the query is sent to the filter cache for further processing.

Note: If there are no attributes in the attribute cache, the attribute cache
manager determines this quickly, and the query is sent to the filter cache.

For example, if the attributes objectclass, uid, and cn are the only cached
attributes, the following filters will not be able to be resolved in memory by the
attribute cache manager:
– (sn=Smith)

– (cn=K*)

– (|(objectclass=eperson)(cn~=Karla))

– (&(objectclass=eperson)(cn=K*)(uid=1234567))

– (&(&(objectclass=eperson)(cn<=Karla))(uid=1234567))

– (&(uid=1234567)(&(objectclass=eperson)(sn=*)))

Note: Choosing to cache member, uniquemember, or ibm-membergroup can lead
to slower performance of delete and modrdn operations. If the entry being
deleted or renamed is a member of many groups, or large groups, then the
attribute caches need to be updated to reflect this change for every group in
which the entry was a member.

Determining which attributes to cache
To determine which attributes to cache, experiment with adding some or all of the
attributes listed in the cached_attribute_candidate_hit attribute to the attribute
cache. Then run your workload and measure the differences in operations per
second. For information about the cached_attribute_candidate_hit attribute, see
“ldapsearch with "cn=monitor"” on page 63.

8 Performance Tuning and Capacity Planning Guide

Note: Choosing to cache member, uniquemember, or ibm-membergroup can lead
to slower performance of delete and modrdn operations. If the entry being
deleted or renamed is a member of many groups or large groups, the
attribute caches are updated to reflect this change for every group in which
the entry was a member. This additional processing can lead to slower
performance of these types of operations.

Examples: Information about attributes that are cached, their individual sizes in
kilobytes, and their hit counts can be retrieved during cn=monitor searches. Also,
up to ten attributes that are most often used in search filters that can be processed
by the attribute cache manager, but are not yet cached, can be retrieved during
cn=monitor searches. Use a combination of the output from cn=monitor searches
and knowledge of the types of searches your applications use to determine which
attributes to cache.

Example 1: The following results are for a cn=monitor search for a server that had
no attributes configured for attribute caching:
ldapsearch -h ldaphost -s base -b cn=monitor objectclass=*
cached_attribute_total_size
cached_attribute_configured_size cached_attribute_hit cached_attribute_size
cached_attribute_candidate_hit
cn=monitor
cached_attribute_total_size=0
cached_attribute_configured_size=1200
cached_attribute_candidate_hit=mail:50000
cached_attribute_candidate_hit=uid:45000
cached_attribute_candidate_hit=givenname:500
cached_attribute_candidate_hit=sn:200

If this cn=monitor search produced these results, you can assume that the
attributes to cache must be uid and mail. Even though givenname and sn were
used in search filters that have been resolved by the attribute cache manager had
those attributes been cached, their hit counts are very low in comparison to the
attributes uid and mail, and using memory to store givenname and sn is not
realistic.

After the attributes uid and mail are cached and the application or performance
test is rerun, the cn=monitor search should be performed again to determine if
there is enough memory configured to cache both attributes. If there is not enough
memory, then additional memory must be configured, or the least-used attribute
must be removed from the list of attributes to cache.

Example 2: In this example, givenname and sn are already cached. The hit count for
objectclass is very high. Also, the hit rates for uid and mail are very high:
ldapsearch -h ldaphost -s base -b cn=monitor objectclass=*
cached_attribute_total_size
cached_attribute_configured_size cached_attribute_hit cached_attribute_size
cached_attribute_candidate_hit
cn=monitor
cached_attribute_total_size=1000
cached_attribute_configured_size=1200
cached_attribute_hit=givenname:500
cached_attribute_size=givenname:300
cached_attribute_hit=sn:200
cached_attribute_size=sn:400
cached_attribute_candidate_hit=objectclass:110000
cached_attribute_candidate_hit=mail:90000
cached_attribute_candidate_hit=uid:85000
cached_attribute_candidate_hit=workloc:25000

Chapter 2. IBM Tivoli Directory Server tuning 9

Note: cached_attribute_total_size is the amount of memory used by the directory
attribute cache, in kilobytes. This number includes additional memory used
to manage the cache that is not charged to the individual attribute caches.
Consequently, this total is larger than the sum of the memory used by all
the individual attribute caches.

As in the previous example, givenname and sn are not good choices for caching
because of their relatively low hit count, in comparison to the other attributes
listed. You can assume that objectclass is the best choice and that uid and mail
are also excellent choices. If attribute caching is reconfigured to cache objectclass,
uid and mail, you might discover after caching is complete and after rerunning
your performance tests under the same conditions, that your performance isn't
what you expect. Also, the cn=monitor search yields the following unexpected
results which show that only objectclass is cached, and its hit count is much lower
than when it was a candidate:
ldapsearch -h ldaphost -s base -b cn=monitor objectclass=*
cached_attribute_total_size
cached_attribute_configured_size cached_attribute_hit cached_attribute_size
cached_attribute_candidate_hit
cn=monitor
cached_attribute_total_size=1000
cached_attribute_configured_size=1200
cached_attribute_hit=objectclass:10000
cached_attribute_size=objectclass:750
cached_attribute_candidate_hit=mail:90000
cached_attribute_candidate_hit=uid:85000
cached_attribute_candidate_hit=workloc:25000
cached_attribute_candidate_hit=givenname:300
cached_attribute_candidate_hit=sn:200

Two things occurred to cause these results:
1. The objectclass attribute table was large in comparison to the other attribute

tables. Even though objectclass, uid and mail were all configured to be
cached, objectclass was the only attribute that fit within the maximum
memory configured for attribute caching.

2. Further analysis of the search filters used by your application reveals that
objectclass was not used in search filters by itself very often. The attribute
cache manager could not resolve many filters because not all attributes in the
filter were cached. A combination of the cn=monitor output and analysis of the
filters used by your application is necessary to determine which attributes to
cache. The following search filters were used in this example:
(objectclass=*) 10000 hits
(givenname=*) 300 hits
(sn=*) 200 hits
(mail=*) 50000 hits
(uid=*) 45000 hits
(workloc=* 5000 hits
(&(objectclass=person)(mail=*)) 40000 hits
(&(objectclass=person)(uid=*)) 40000 hits
(&(objectclass=person)(workloc=*)) 20000 hits

You can see from the above filter analysis that objectclass, when used alone, had
only 10000 hits. Therefore, if the only attribute cached is objectclass, the attribute
cache manager can only resolve 10000 out of the 210500 total search filters. If the
server is reconfigured to have enough memory to hold both the objectclass and
mail attributes, 100000 of the search filters can be resolved in the attribute cache
manager. If objectclass, uid and mail were all configured and enough memory
was available, 185000 of the search filters can be resolved by the attribute cache
manager. However, if memory is constrained and only one attribute can be cached,

10 Performance Tuning and Capacity Planning Guide

the best choice is mail with 50000 hits. If both uid and mail can be cached, 95000
filters can be resolved in the attribute cache manager, which is almost as many hits
as caching objectclass and mail instead.

Because caching uid and mail likely consumes less memory than caching
objectclass and mail, caching uid and mail instead of objectclass and mail
might be a better choice if not enough memory is available on your server.
Therefore, it is necessary to understand and consider the types of search filters
used by your application in order to determine the appropriate attributes to cache
as well as to consider the amount of memory that you want the attribute cache to
be able to use.

LDAP filter cache
The filter cache contains cached entry IDs that match a search filter that was
previously resolved in DB2. When the client issues a query for some data and that
query is not a base-scoped search that can be resolved in memory nor is it a filter
that can be resolved in memory by the attribute cache manager, the query goes to
the filter cache. There are two things that can happen when a query arrives at the
filter cache:
v The IDs that match the filter settings used in the query are located in the

filter cache. If this is the case, the list of the matching entry IDs is sent to the
entry cache.

v The matching entry IDs are not cached in the filter cache. In this case, the
query must access DB2 in search of the desired data.

Filter cache size
To determine how big your filter cache should be, run your workload with the
filter cache set to different values and measure the differences in operations per
second. For example, Figure 2 on page 12 shows varying operations per second
based on different filter cache sizes for one installation:

Chapter 2. IBM Tivoli Directory Server tuning 11

For this workload it appears that a filter cache large enough to hold 55,000 entries
results in the best performance. There is no benefit in making the filter cache any
larger than this. See “LDAP cache configuration variables” on page 15 to set the
filter cache size.

Filter cache size with updates
Figure 3 on page 13 shows that, for the test installation, there is no performance
benefit in allocating any memory to the filter cache if even a small fraction of the
operations in the workload are updates.

If this proves to be the case for your workload, the only way to retain the
performance advantage of a filter cache when updates are involved is to batch
your updates. This allows long intervals during which there are only searches. If
you cannot batch updates, specify a filter cache size of zero and allocate more
memory to other caches. See “LDAP cache configuration variables” on page 15 for
instructions on how to set configuration variables such as filter cache size.

Figure 2. Varying the size of the filter cache

12 Performance Tuning and Capacity Planning Guide

Filter cache bypass limits
The filter cache bypass limit configuration variable limits the size of entries that
can be added to the filter cache. For example, if the bypass limit variable is set to
1,000, search filters that match more than 1,000 entries are not added to the filter
cache. This prevents large, uncommon searches from overwriting useful cache
entries. See “LDAP cache configuration variables” on page 15 to set the filter cache
bypass limit.

Entry cache
The entry cache contains cached entry data. Entry IDs are sent to the entry cache.
If the entries that match the entry IDs are in the entry cache, then the results are
returned to the client. If the entry cache does not contain the entries that
correspond to the entry IDs, the query goes to DB2 in search of the matching
entries.

Entry cache size
To determine how big your entry cache should be, run your workload with the
entry cache set to different sizes and measure the differences in operations per
second. For example, Figure 4 on page 14 shows varying operations per second
based on different entry cache sizes:

Figure 3. Effect of updates on the performance of the filter cache

Chapter 2. IBM Tivoli Directory Server tuning 13

From the results in Figure 4, it appears that an entry cache large enough to hold
460,000 entries results in the best performance. There is no benefit to making the
entry cache any larger than this. Setting the entry cache at 460,000 results in 4
times as many operations per second than if entry cache was set to zero. To find
the best cache size for your workload, you must run your workload with different
cache sizes. See “LDAP cache configuration variables” on page 15 to set the filter
cache size.

Note: The test with Entry Cache size at 345k resulted in unpredictable
performance due to the nature of the test case and the relationship to the
chosen cache size. Certain parts of the workload were in cache while others
not, resulting in a harmonics effect.

Group members cache
The group members cache is an extension of the Entry cache. This cache stores
member and uniquemember attribute values with their entries. The group entries
will only be a part of the group members cache if the entry structures actually
have members and uniquemembers. Otherwise, they will be a part of the regular
entry cache. Group member caching can be controlled using the two configuration
options:
v ibm-slapdGroupMembersCacheSize: This defines the number of groups whose

members will be cached. The default value for this configuration option is 25.
v ibm-slapdGroupMembersCacheBypassLimit: This defines the maximum

number of members a group can have in order for it to be cached in the group
members cache. The default value of this configuration option is 25000.

ACL cache
The Access Control List (ACL) cache contains information about the access
permissions of recently queried entries, such as the entry owner and whether the
entry's permissions are explicit or inherited. Having this information cached in

Figure 4. Varying the size of the entry cache

14 Performance Tuning and Capacity Planning Guide

memory can speed up the process of determining whether the user who submitted
the query is authorized to see all, some, or none of its results.

Measuring cache entry sizes
Filter cache and entry cache sizes are measured in numbers of entries. When
determining how many entries to allow in your LDAP caches, it can be useful to
know how big the entries in your cache are.

The following example shows how to measure the size of cached entries:

Note: This example calculates the average size of an entry in a sample entry cache,
but the average filter cache entry size can be calculated similarly.

1. From the LDAP server:
a. Set the filter cache size to zero.
b. Set the entry cache size to a small value; for example, 200.
c. Start ibmslapd.

2. From the client:
a. Run your application.
b. Find the entry cache population (call this population1) using the following

command:
ldapsearch -h servername -s base -b cn=monitor objectclass=* | grep
entry_cache_current

3. From the LDAP Server:
a. Find the memory used by ibmslapd (call this ibmslapd1):
v On AIX operating systems, use the following command:

ps -e -o vsz -o command | grep ibmslapd

v On Windows operating systems, use the VM size column in the Task
Manager.

b. Stop ibmslapd.
c. Increase the size of the entry cache but keep it smaller than your working

set.
d. Start ibmslapd.

4. Run your application again and find the entry cache population (call this
population2). See step 2b for the command syntax.

5. Find the memory used by ibmslapd (call this ibmslapd2). See step 3a for the
command syntax.

6. Calculate the size of an entry cache entry using the following formula:
(ibmslapd size2 - ibmslapd size1) /
(entry cache population2 - entry cache population1)

For example, using this formula with a 500,000-entry database results in the
following measurement:
(192084 KB – 51736 KB) / (48485 – 10003) = 3.65 KB per entry

LDAP cache configuration variables
LDAP cache configuration variables allow you to set the LDAP cache sizes, bypass
limits, and other variables that affect performance.

Chapter 2. IBM Tivoli Directory Server tuning 15

Configuring attribute caching
The attribute cache size is measured by the amount of memory the attribute cache
requires. You can configure the maximum amount of memory allowed to be used
for attribute caching. You can configure attribute caching for the directory
database, the changelog database, or both. Typically, there is no benefit from
configuring attribute caching for the changelog database unless you perform very
frequent searches of the changelog.

Note: Starting with the IBM Tivoli Directory Server 6.3 release, attribute cache is
deprecated. Henceforth, users should avoid using attribute cache.

Using the Web Administration Tool
To configure the attribute cache using the Web Administration Tool:

Expand the Manage server properties category in the navigation area of the Web
Administration Tool, select the Attribute cache tab.
1. You can change the amount of memory in kilobytes available to the directory

cache. The default is 16384 kilobytes (16 MB).
2. You can change the amount of memory in kilobytes available to the changelog

cache. The default is 16384 kilobytes (16 MB).

Note: This selection is disabled if a changelog has not been configured.

To enable directory automatic attribute caching, perform the following steps:

1. Select the Enable directory automatic attribute cache check box. This enables
other elements within this group.

2. Enter the start time for directory automatic attribute caching in the Start Time
text box.

3. From the Interval combo box, select the interval at which the directory
automatic attribute caching is to be performed again.

To enable change log automatic attribute caching, perform the following steps:

1. Select the Enable change log automatic attribute cache check box. This enables
other elements within this group.

2. Enter the start time for change log automatic attribute caching in the Start
Time text box.

3. From the Interval combo box, select the interval at which the change log
automatic attribute caching is to be performed again.

Note: Automatic attribute caching for change log should not be enabled unless
frequent searches within the change log are required and the performance of
these searches are critical.

To add an attribute:

1. Select the attribute that you want to cache from the Available attributes
drop-down menu. Only those attributes that can be designated as cached
attributes are displayed in this menu. For example, sn.

Note: An attribute remains in the list of available attributes until it has been
placed in both the Directory and the Changelog containers.

2. Click either Add to Database or Add to Change log button. The attribute is
displayed in the appropriate list box. You can list the same attribute in both
containers.

16 Performance Tuning and Capacity Planning Guide

3. Repeat this process for each attribute you want to cache.

Note: An attribute is removed from the drop-down list when it is added to
both the Cached attributes under Database and Cached attributes
under Change log listboxes. If changelog is not enabled, then the Add to
Change log button is disabled and the entry cannot be added to Cached
attributes under Change log list box. The attribute is removed from the
available attributes list when it is added to Cached attributes under
Database list box.

4. When you are finished, click Apply to save your changes without exiting, or
click OK to apply your changes and exit, or click Cancel to exit this panel
without making any changes.

Using the command line
To configure the attribute cache through the command line, issue the following
command:
ldapmodify -D <adminDN> -w<adminPW> -i<filename>

where <filename> contains the following, for example.
v For configuring specific attributes for the directory database:

dn: cn=Directory, cn=RDBM Backends, cn=IBM Directory,
cn=Schemas, cn=Configuration

changetype: modify
add: ibm-slapdCachedAttribute
ibm-slapdCachedAttribute: sn
-
add: ibm-slapdCachedAttribute
ibm-slapdCachedAttribute: cn
-
replace: ibm-SlapdCachedAttributeSize
ibm-SlapdCachedAttributeSize: 262144

v For automatic attribute caching for the directory database:
dn: cn=Directory, cn=RDBM Backends, cn=IBM Directory,

cn=Schemas, cn=Configuration
changetype: modify
replace: ibm-SlapdCachedAttributeSize
ibm-SlapdCachedAttributeSize: 262144
-
replace: ibm-slapdCachedAttributeAutoAdjust
ibm-slapdCachedAttributeAutoAdjust: TRUE

v For the changelog database:
dn: cn=change log, cn=RDBM Backends, cn=IBM Directory,

cn=Schemas, cn=Configuration
changetype: modify
add: ibm-slapdCachedAttribute
ibm-slapdCachedAttribute: changetype
-
replace: ibm-SlapdCachedAttributeSize
ibm-SlapdCachedAttributeSize: 32768

See the IBM Tivoli Directory Server Version 6.3 Administration Guide for more
information.

Setting other LDAP cache configuration variables
You can set LDAP configuration variables using the Web Administration Tool or
the command line.

Chapter 2. IBM Tivoli Directory Server tuning 17

Using the Web Administration Tool
To set LDAP configuration variables using the Web Administration Tool:
1. Expand the Manage server properties category in the navigation area of the

Web Administration tool.
2. Click Performance.
3. You can modify any of the following configuration variables:
v Cache ACL information — This option must be selected for the Maximum

number of elements in ACL cache settings to take effect.
v Maximum number of elements in ACL cache (ACL cache size) — The

default is 25,000.
v Maximum number of elements in entry cache (entry cache size) — Specify

the maximum number of elements in the entry cache. The default is 25,000.
See “Entry cache” on page 13 for more information about the entry cache.

v Maximum number of elements in search filter cache (filter cache size) —
The search filter cache consists of the requested search filters and resulting
entry identifiers that matched. On an update operation, all filter cache entries
are invalidated. The default is 25,000. See “LDAP filter cache” on page 11 for
more information about the filter cache.

v Maximum number of elements from a single search added to search filter
cache (filter cache bypass limit) — If you select Elements, you must enter a
number. The default is 100. Otherwise select Unlimited. Search filters that
match more entries than the number specified here are not added to the
search filter cache. See “Filter cache bypass limits” on page 13 for more
information about bypass limits.

4. When you are finished, click OK to apply your changes, or click Cancel to exit
the panel without making any changes.

Using the command line
To set LDAP configuration variables using the command line, issue the following
command:
ldapmodify -DAdminDN -wAdminpassword -ifilename

where the file filename contains:

dn: cn=Directory,cn=RDBM Backends,cn=IBM Directory,
cn=Schemas,cn=Configuration

changetype: modify
replace: ibm-slapdDbConnections
ibm-slapdDbConnections: 15

dn: cn=Front End, cn=Configuration
changetype: modify
replace: ibm-slapdACLCache
ibm-slapdACLCache: TRUE
-
replace: ibm-slapdACLCacheSize
ibm-slapdACLCacheSize: 25000
-
replace: ibm-slapdEntryCacheSize
ibm-slapdEntryCacheSize: 25000
-
replace: ibm-slapdFilterCacheSize
ibm-slapdFilterCacheSize: 25000

18 Performance Tuning and Capacity Planning Guide

-
replace: ibm-slapdFilterCacheBypassLimit
ibm-slapdFilterCacheBypassLimit: 100

Additional settings
There are several additional settings that affect performance by putting limits on
client activity, minimizing the impact to server throughput and resource usage,
such as:
v ibm-slapdSizeLimit: 500
v ibm-slapdTimeLimit: 900
v ibm-slapdIdleTimeOut: 300
v ibm-slapdMaxEventsPerConnection: 100
v ibm-slapdMaxEventsTotal: 0
v ibm-slapdMaxNumOfTransactions: 20
v ibm-slapdMaxOpPerTransaction: 5
v ibm-slapdMaxTimeLimitOfTransactions: 300
v ibm-slapdPagedResAllowNonAdmin: TRUE
v ibm-slapdPagedResLmt: 3
v ibm-slapdSortKeyLimit: 3
v ibm-slapdSortSrchAllowNonAdmin: TRUE

For more information about these settings, see "Appendix R. IBM Tivoli Directory
Server configuration schema" in IBM Tivoli Directory Server Version 6.3 Installation
and Configuration Guide.

Note: Default values are shown.

The IBM Tivoli Directory Server response time for searches with alias dereferencing
option set to always or searching is significantly greater than that of searches with
the dereferencing option set to never. A server-side configuration option
ibm-slapdDerefAliases under dn: cn=Configuration can be used to override the
dereference option specified in the client search requests. The allowed values are:
v never

v find

v search

v always

By setting the value to never, the server does not attempt to dereference possible
aliases, and the response time for searches improves.

Setting SLAPD_OCHSELECT_USECS
An administrator can set the environment variable, SLAPD_OCHSELECT_USECS,
to invoke the OCH select() call with a timeout value, where the timeout value is of
microsecond granularity. If the SLAPD_OCHSELECT_USECS variable is not
present, or is present and the value is zero, the OCH select() invocation will
continue with an indefinite timeout value. If SLAPD_OCHSELECT_USECS is set to
a positive integer value, the OCH select() invocation occurs with the set timeout
value, which is considered in microseconds.

You can set the environment variable SLAPD_OCHSELECT_USECS or modify the
value of the variable by altering or adding the ibm-slapdSetenv attribute under
the "cn=Front End, cn=Configuration" entry of the ibmslapd.conf file. For example,

Chapter 2. IBM Tivoli Directory Server tuning 19

to set the value of SLAPD_OCHSELECT_USECS to 1000 microseconds, issue the
ldapmodify command in the following format:
idsldapmodify -D <adminDN> -w <adminPW>
dn: cn=Front End, cn=Configuration
changetype: modify
add: ibm-slapdSetEnv
ibm-slapdSetenv: SLAPD_OCHSELECT_USECS=1000

You must restart the LDAP server to effect the changes made. On restarting the
LDAP server, SLAPD_OCHSELECT_USECS is configured with a value of 1000
microseconds (or one millisecond).

Directory size
It is important when you run your workload that you consider several
measurements. For example, measuring the number of operations per second as
shown in Figure 5, it appears that performance degrades significantly as the
database size grows.

However, the benchmark tool test includes a large fraction of wildcard searches
and exact-match searches, such as "(sn=Smith)" that return all entries where the sn
value is "Smith". Both of these types of searches typically return multiple entries in
response to a single search request. As Figure 6 on page 21 shows, as the size of
the directory grows, so does the number of entries returned in response to
wildcard and exact-match search requests.

Figure 5. Operations per second

20 Performance Tuning and Capacity Planning Guide

In this situation, the number of entries returned per second is a truer measure of
throughput than operations per second, because each operation requires more
work to be performed as the size of the database grows.

Note: As your directory grows, it might become necessary to readjust the sizes of
the LDAP caches. You can determine the optimal sizes for your caches and
buffer pools using the guidelines in “LDAP caches” on page 7 and “Tuning
DB2 buffer pool” on page 24. The DB2 buffer pool tuning is performed
automatically in Tivoli Directory Server V6.2 and above versions.

Figure 6. Entries returned per second

Chapter 2. IBM Tivoli Directory Server tuning 21

22 Performance Tuning and Capacity Planning Guide

Chapter 3. Tuning DB2 and LDAP caches

IBM Tivoli Directory Server uses DB2 as the data store and Structured Query
Language (SQL) as the query retrieval mechanism. While the LDAP server caches
LDAP queries, answers, and authentication information, DB2 caches tables,
indexes, and statements.

Many DB2 configuration parameters affect either the memory (buffer pools) or disk
resources. Since disk access is usually much slower than memory access, the key
database performance tuning objective is to decrease the amount of disk activity. In
DB2 v9.0, the the Self Tuning Memory Manager (STMM) was introducted. Users
can use STMM instead of manually tuning several DB2 parameters. When the
STMM is used, DB2 will assign the correct values to memory consumers based on
the usage of the system and available resources. DB2 STMM can be used by setting
the values of DB2 buffer pool to AUTOMATIC.

This chapter covers the following areas:
v DB2 buffer pool tuning
v Tuning DB2 and LDAP caches using the idsperftune tool
v Database maintenance using the idsdbmaint tool. This covers DB2 index

organization, DB2 row compression, and tablespace conversion.
v Database maintenance using the idsrunstats tool.
v Optimization and organization (reorgchk and reorg)
v Other DB2 configuration parameters
v Backing up and restoring the database (backup and restore)
v Data row compression feature

For detailed information about DB2 commands, see the DB2 9.7 Information Center
at the following Web site: http://publib.boulder.ibm.com/infocenter/db2luw/
v9r7/index.jsp.

Attention: Only users listed as database administrators can run the DB2
commands. Be sure the user ID running the DB2 commands is a user in the
dbsysadm group (UNIX operating systems) or a member of the Administrator
group (Windows operating systems.) This includes the DB2 instance owner and
root.

If you have any trouble running the DB2 commands, check to ensure that the DB2
environment variables have been established by running db2profile (if not, the
db2 get and db2 update commands will not work). The script file db2profile is
located in the sqllib subdirectory under the instance owner's home directory. If you
need to tailor this file, follow the comments inside the file to set your instance
name, user paths, and default database name (the default path is
/home/ldapdb2/sqllib/db2profile.) It is assumed that the user is logged in as
ibm-slapdDbUserId. If logged in as the root user on a UNIX operating system, it
is possible to switch to the instance owner as follows:
su - instance_owner

where instance_owner is the defined owner of the LDAP database.

© Copyright IBM Corp. 2003, 2010 23

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

To log on as the database administrator on a Windows 2000 operating system, run
the following command:
runas /user:instance_owner db2cmd

where instance_owner is the defined owner of the LDAP database.

Tuning DB2 buffer pool
DB2 buffer pool tuning is one of the most significant types of DB2 performance
tuning. A buffer pool is a data cache between LDAP and the physical DB2
database files for both tables and indexes. DB2 buffer pools are searched when
entries and their attributes are not found in the entry cache. Typically, buffer pool
tuning is needed to be done when the database is initially loaded and when the
database size changes significantly. Disabling file system caching is recommended
when buffer pools are used. Doing so will improve performance of utilities like
bulkload, by removing a redundant level of caching.

There are several considerations to keep in mind related to DB2 buffer pools; for
example:
v If there are no buffer pools, all database activity results in disk access.
v If the size of each buffer pool is too small, LDAP must wait for DB2 disk activity

to satisfy DB2 SQL requests.
v If one or more buffer pools is too large, memory on the LDAP server might be

wasted.
v If the total amount of space used by the LDAP caches and both buffer pools is

larger than physical memory available on the server, operating system paging
(disk activity) will occur.

v Most importantly, current versions of DB2 support automatic tuning of the
buffer pools.

The Tivoli Directory Server performance tuning tool (idsperftune) will set DB2
configuration options so that automatic tuning of the buffer pools is done.

To get the current DB2 buffer pool sizes, run the following commands:
db2 connect to database_name
db2 select varchar(bpname,20) as bpname,npages,pagesize from syscat.bufferpools

where database_name is the name of the database.

The following example output shows the default settings for the example above:
BPNAME NPAGES PAGESIZE
------------------ ----------- -----------
IBMDEFAULTBP 29500 4096
LDAPBP 1230 32768

2 record(s) selected.

To determine the current file system caching option for each of the tablespace,
execute the following commands:
db2 get snapshot for tablespaces on ldapdb2 | egrep ’tablespace name|File system caching’

To turn off file system caching with DB2 version 8.2 or later and with operating
systems and file system environments that support it, use the following command:

24 Performance Tuning and Capacity Planning Guide

db2 connect to ldapdb2
db2 alter tablespace USERSPACE1 no file system caching
db2 alter tablespace LDAPSPACE no file system caching
db2 terminate
db2stop
db2start

To set the buffer pool sizes, use the following commands:
db2 alter bufferpool ibmdefaultbp size <new size in 4096 byte pages>
db2 alter bufferpool ldapbp size <new size in 32768 byte pages>
db2 terminate
db2stop
db2start

If these commands are executed while the directory server is running, the db2stop
command will fail with a message indicating there are still applications connected
to the database. If this occurs, stop the directory server and then run the following
commands:
db2stop
db2start

DB2 buffer pool analysis
To analyze the performance of DB2 buffer pool perform the following procedure.
1. Turn on buffer pool monitoring.

db2 update database manager configuration using DFT_MON_BUFPOOL ON
db2stop
db2start

2. Connect to the database.
db2 connect to ldapdb2

where, ldapdb2 is the database instance.
3. Start the workload to be analyzed.
4. Reset the monitor data.

db2 reset monitor all

5. Obtain the statistics with the workload in progress.
6. Take a snapshot of the buffer pool statistics and process the output. The

following command takes a snapshot of the current buffer pool statistics:
db2 get snapshot for bufferpools on ldapdb2

The following command takes a snapshot and reports the read times:
db2 get snapshot for bufferpools on idsdb | awk ’{
if($1=="Bufferpool"&&$2=="name"){print $0}
if (index($0,"pool read time")){print "\t"$0}
}’

The following command takes a snapshot and reports the number of logical
and physical reads:
db2 get snapshot for bufferpools on idsdb | awk ’{
if($1=="Bufferpool"&&$2=="name"){print $0}
if (index($0,"cal reads")){print "\t"$0}
}’ | grep -v temp

The following command takes a snapshot and reports miss ratios:

Chapter 3. Tuning DB2 and LDAP caches 25

db2 get snapshot for bufferpools on idsdb | grep -v temporary | awk ’{
if($1=="Bufferpool"&&$2=="name"){print $0}
if (index($0,"logical reads")){l=$NF;getline;p=$NF;
if (l==0){r=0}else{r=p/l};print "\tMiss ratio: "$3" "r}
}’

7. Tune the buffer pool sizes such that the IBMDEFAULTBP has a very low read
time, a low number of reads, and a low miss ratio, but do not exceed system
physical memory size or reduce the LDAPBP size to less than 2075 pages of 32
KB.
A higher miss ratio means there are a higher number of physical reads and a
lower number of cache hits. Allocate the remaining physical memory to the
LDAPBP as follows:

With file system caching turned off
LDAPBP size = (<total physical memory> - 1 GB (for IDS and DB2) -
(IBMDEFAULTBP size) * 4096) / 32768

With file system caching turned on
LDAPBP size = (<total physical memory> - 1.75 GB (for IDS, DB2 and
file system caching) - (IBMDEFAULTBP size) * 4096) / 32768

If any of the buffer pool sizes are set too high, DB2 will fail to start due to
insufficient memory. If this occurs there might be a core dump file, but usually
there are no error messages. On AIX systems, the system error log might report a
memory allocation failure. To view this log, enter the following:
errpt –a | more

If DB2 fails to start due to buffer pool sizes being too large, set the buffer pool
sizes to lower values and restart DB2. Also, restoring a database that was backed
up on a system with buffer pool sizes that are too large for the target system will
cause the restoration to fail.

Notes:

1. If you have problems connecting to the database on Windows systems, check
the DB2INSTANCE environment variable. By default this variable is set to DB2.
However, to connect to the database, the environment variable must be set to
the database instance name. For additional stability and performance
enhancements, upgrade to the latest version of DB2.

2. In DB2 version 9.x, the self_tuning_mem database configuration parameter is
automatically set to ON when you create a single-partition database and sets
the following values to AUTOMATIC. By doing so, the following memory
consumers can be enabled for self tuning:
v Buffer pools (controlled by the ALTER BUFFERPOOL and CREATE

BUFFERPOOL statements)
v Package cache (controlled by the pckcachesz configuration parameter)
v Locking memory (controlled by the locklist and maxlocks configuration

parameters)
v Sort memory (controlled by the sheapthres_shr and the sortheap

configuration parameter)
v Database shared memory (controlled by the database_memory configuration

parameter)
To limit DB2 buffer pools in using all the available memory, user must perform
the following steps before enabling the STMM.
v Allow the setting for database shared memory size configuration parameter,

DATABASE_MEMORY, to use the default automatic values.

26 Performance Tuning and Capacity Planning Guide

db2 ALTER BUFFERPOOL LDAPBP SIZE AUTOMATIC
db2 ALTER BUFFERPOOL IBMDEFAULTBP SIZE AUTOMATIC

v Run the instance under normal load and monitor the value of
DATABASE_MEMORY to determine an optimum size for the setting.

v Set DATABASE_MEMORY to the determined size instead of automatic.
db2 ALTER BUFFERPOOL LDAPBP SIZE <Determined_Value>
db2 ALTER BUFFERPOOL IBMDEFAULTBP SIZE <Determined_Value>

This will optimize performance by stabilizing the setting to a fixed value.

Tuning DB2 transaction log size
The space required by DB2 transaction log is specified by the following DB2
parameters:
v LOGFILSIZ
v LOGPRIMARY
v LOGSECOND
v NEWLOGPATH

To view the DB2 parameters associated with DB2 transaction log and their values,
run the following command:
db2 get database configuration for ldapdb2 | \

egrep ’LOGFILSIZ|LOGPRIMARY|LOGSECOND|NEWLOGPATH|Path to log files’
Log file size (4KB) (LOGFILSIZ) = 2000
Number of primary log files (LOGPRIMARY) = 8
Number of secondary log files (LOGSECOND) = 3
Changed path to log files (NEWLOGPATH) =

Tivoli Directory Server uses transaction log disk space for storing uncommitted
DB2 transactions from directory update operations. The transaction log parameters
must be tuned to allow the transaction logs to grow to their maximum required
size. The transaction log size is limited by the values of DB2 parameters
LOGFILSIZ, LOGPRIMARY, and LOGSECOND, and also by the available disk
space in the directory specified by the NEWLOGPATH DB2 parameter. If the
transaction logs exceeds the limit due to the settings of the DB2 size parameter,
then the transaction is backed out using the information in the transaction logs and
the transaction fails. If the transaction logs exceed the limit due to a lack of
available disk space, the database becomes corrupted and goes into an unusable
state. If the database becomes corrupted in this way, it is possible to issue DB2
commands to recover the database. Alternatively, the database can be restored from
a backup or reloaded. If the database becomes corrupted, often the recovery
commands can be found in the sqllib/db2dump/db2diag.log file, which is located
in the DB2 instance owner's home directory. By default the DB2 transaction log file
size (LOGFILSIZ) is defined to be 2000 blocks of 4 KB in size or 8000 KB per log
file. The number of primary logs files (LOGPRIMARY) is defined as 8 and the
number of secondary log files (LOGSECOND) is 3. In order to increase the DB2
transaction log limits to allow for millions of users, it is necessary to increase the
size of the transaction logs (LOGFILSIZ) and increase the number of secondary
files (LOGSECOND). It is better to increase the number of secondary files rather
than the number of primary files, because the secondary files periodically get
deleted when not in use.

The transaction log requirements are small for a Tivoli Directory Server running
with a normal workload. It is observed that runtime directory operations will
increase the transaction log requirements for a short period of time.

Chapter 3. Tuning DB2 and LDAP caches 27

v The ldapadd or ldapmodify commands use some amount of transaction log
space as the number of multi-valued attributes added to a single LDAP entry in
a single command grows. For example, when loading many members into a
group.

v An ACL placed on a suffix object can result in that ACL propagating to every
entry under that suffix. The Tivoli Directory Server performs ACL propagation
as one single committed DB2 transaction.

Tuning database connections
The default number of connections that get created between Tivoli Directory Server
and DB2 is 15, which suffices for most environment in which directory server is
used. However based on the requirement, user can increase the database
connection to unlimited (upper limit INT_MAX - 2147483647) by modifying the
attribute ibm-slapdDbConnections. If a value of less than or equal to zero, or
greater than INT_MAX is specified, then the default value of 15 will be considered.

Depending on the server load and the nature of connections, performance might
improve will the increase in the number of back-end connections. The best way to
make this decision is by determining the result of the monitor search and look for
available_workers threads in the output. Database connection is basically the
number of worker threads, so to increase the workers threads or to increase the
backend connections, user must set the attribute ibm-slapdDbConnections under
the DN entry cn=Directory, cn=RDBM Backends, cn=IBM Directory, cn=Schemas,
cn=Configuration. To view the monitor search result, run the idsldapsearch
command of the following format:
idsldapsearch -p <port> -D <adminDN> -w <adminPwd> -s base -b "cn=monitor" objectclass=* \
| grep -i available_workers

The performance tuning tool (idsperftune)
The IBM Tivoli Directory sever provides a tool named idsperftune (the
Performance Tuning tool) that enables administrators to achieve higher directory
server performance by tuning directory caches, DB2 buffer pools, and DB2
parameters. The idsperftune tool must be run against a directory server instance
with RDBM configured. If the tool is run against a proxy server instance, the tool
will provide an appropriate error message and will exit.

The idsperftune tool runs based on the inputs it received from an administrator. If
the inputs are not provided by the administrator, then the default values are
considered. The inputs from the administrator are provided to the tool using the
property file, perftune_input.conf. For information about configuring and running
the Performance Tuning Tool using the Configuration Tool, see the IBM Tivoli
Directory Server Version 6.3 Installation and Configuration Guide.

The idsperftune tool works in two modes: basic and advanced.

Basic tuning
The basic tuning mode of operation deals with the tuning of the following:
v LDAP caches: These include entry cache, filter cache, group member cache, and

group member cache bypass limit.
v DB2 buffer pools: These include IBMDEFAULTBP and LDAPBP.

28 Performance Tuning and Capacity Planning Guide

The basic tuning mode recommends optimum tuning values for LDAP caches and
DB2 buffer pools and optionally updates the LDAP cache and DB2 buffer pool
parameters to the recommended settings. These recommendations are based on the
following inputs:
v Amount of free system memory (%) to be allotted to Tivoli Directory Server

instance:
This is the total memory that will be allocated to an instance and will be used as
an input to the tool while tuning the size of entry cache, filter cache, and group
member cache. If not specified, then the default value of 90% of system memory
available at the time idsperftune is run will be taken.

v The number of entries and the average size of an entry that is in a directory
server instance
– Total number of entries that will reside in the directory:

This value is used as an input to the tool to estimate the size that should be
assigned to the cache.

– Average size of entry (Bytes):
This value represents the average size of an entry that is expected to reside in
memory. The average size of an entry and the total number of entries is used
by the idsperftune tool to calculate the total size of the directory. Based on
this, the size that should be allotted to Entry and Filter cache is calculated.

Note: The idsperftune tool provides a command line option to calculate the
total number of entries and average size of entries that are present in the
directory. For example, if an administrator provides the command line
option "-s " then idsperftune will compute total number of entries and
average size of entries and log the details in the perftune_input.conf file.
If the administrator does not provide the command line option, then the
total number of entries is set defaulted 10000. For further information
about the idsperftune tool refer IBM Tivoli Directory Server Version 6.3
Command Reference.

v Update Frequency:
The administrator must specify whether frequent updates, or only batch
updates, are expected. If the administrator specifies that frequent updates are
expected, then the filter cache is set to 0. Otherwise, it is set to 1 KB.

v Total number of groups to be cached:
An administrator can tune this value by providing an estimate of the total
number of groups whose members need to be cached. This should be the
number of groups frequently used. If not specified, the default value of 25 is
used.

v Average number of members in a group:
An administrator can tune this value to set the total number of members within
a group that will be cached. If not specified, the default value of 25000 is used.

v Server instance name:
This value is taken from IDS_LDAP_INSTANCE environment variable. If this
environment variable is not set then the server instance name is set to the name
of the directory server instance that is present. However, if more then one
instance is present and no instance name is provided by the administrator, then
an appropriate error message is displayed.

The DB2 buffer pools IBMDEFAULTBP and LDAPBP are set to AUTOMATIC when
the idsperftune tool is allowed to update the configuration settings (-u option).
This enables the DB2 self tuning memory manager to dynamically adjust the sizes

Chapter 3. Tuning DB2 and LDAP caches 29

of the DB2 buffer pools. When the idsperftune tool is run, the size that is to be
allotted to LDAP entry cache is calculated. If the idsperftune tool is run in basic
mode by providing the –B and –u options, then DB2 buffer pools will be set to
AUTOMATIC.

If the system memory available to the directory server is sufficient to cache at least
80% of directory entries then the LDAP entry cache size is set to the size required
to cache 80% or more of total entries. To override the default requirement for at
least 80% of entries that should reside in LDAP entry cache, run the idsperftune
tool with the -E option and the target percentage of entries to be cached. For
example, to cache a minimum of 50% of entries in the entry cache run the
following command:
idsperftune -I <instance_name> -E 50

If the system memory allotted to the directory server is not enough to cache 80%
of total entries present in the directory then the entry cache is set to a minimum
value which is 1000.

SYS_MEM_AVL
If the variable SYS_MEM_AVL in the perftune statistics file is set to TRUE, then
80% of the directory entries will be cached. If the SYS_MEM_AVL variable is set to
FALSE, a minimum amount of system memory is allotted to LDAP entry cache
and the remaining is allotted to DB2 buffer pools.

Examples
Using the idsperftune command for basic tuning:
v To get basic tuning recommendations, run the idsperftune command with the

following arguments:
idsperftune –I <instance_name> -B

v To update the database with the suggested parameters during basic tuning, run
the idsperftune command with the following arguments:
idsperftune –I <instance_name> -B –u

or
idsperftune –I <instance_name> –u

v To update the admin input file with the total number of entries and average
entry size, run the idsperftune tool with the following arguments:
idsperftune -I <instance_name> -s

Advanced tuning
For this phase of tuning, the directory server should be deployed and populated
with entries. Ideally, the directory server should be servicing client requests for
some period of time but the idsperftune tool can be run against a directory server
instance on which no operations have been performed to get recommendations for
basic or advance tuning mode. In advanced tuning mode, setting the DB2 monitor
switches to ON initiates data collection that enable better tuning of DB2. The DB2
monitor switches can be set to ON by running the idsperftune command with the
-m option. If a user wants to perform tuning based on a typical workload, then the
idsperftune command should be run with the -A and -m options, this will set the
DB2 monitor switches to ON and then waits for some minutes before collecting the
statistics. Tuning will be based on whatever workload ran prior to collecting the
DB2 monitor information. A user also has option to set DB2 monitor switches to
OFF by running the idsperftune command with the -o option. Administrators can
run idsperftune with appropriate advanced tuning option to monitor different DB2

30 Performance Tuning and Capacity Planning Guide

parameters. For further information about the idsperftune tool refer to IBM Tivoli
Directory Server Version 6.3 Command Reference.

The DB2 parameters that can be monitored for tuning at run time are as follows:
v PCKCACHESZ: This parameter is allocated out of the database shared memory

and is used for caching of sections for static and dynamic SQL and XQuery
statements on a database.

v LOGFILSIZ: This parameter defines the size of each primary and secondary log
file. The size of these log files limit the number of log records that can be
written to them before they become full and a new log file is required.

v LOGBUFSZ: This parameter allows to specify the amount of the database heap
(defined by the dbheap parameter) to use as a buffer for log records before
writing these records to disk.

v SORTHEAP: This parameter defines the maximum number of private memory
pages to be used for private sorts or the maximum number of shared memory
pages to be used for shared sorts.

v MAXFILOP: This parameter specifies the maximum number of file handles that
can be opened for each database agent.

v DBHEAP: This parameter specifies the maximum memory used by the database
heap.

v CHNGPGS_THRESH: This parameter specifies the level (percentage) of changed
pages at which the asynchronous page cleaners will be started, if they are not
currently active.

v NEWLOGPATH: This parameter specifies the location where the log files are
stored, a string value of up to 242 bytes.

The idsperftune tool checks if self tuning memory is enabled. If the idsperftune
tool is run in advanced mode by providing the –A and –u options, then self tuning
memory will be enabled if the tool has detected it to be in disabled state. Self
tuning memory helps in memory configuration by setting values for memory
configuration parameters automatically and sizing buffer pools. When enabled, the
memory tuner dynamically distributes available memory resources among several
memory consumers including the sort, package cache, lock list areas, and buffer
pools.

The idsperftune tool checks if DB2 AUTOMATIC variables such as
SELF_TUNING_MEM, AUTO_MAINT, AUTO_TBL_MAINT, and
AUTO_RUNSTATS are set to ON. If the idsperftune tool is run in advanced mode
by providing the –A and –u options, then these AUTOMATIC variables will be
automatically set to ON, if the tool has detected the variables are in OFF state.
AUTO_TBL_MAINT is the key parameter for other table maintenance related
parameters (AUTO_RUNSTATS, AUTO_STATS_PROF, AUTO_PROF_UPD, and
AUTO_REORG). Additionally, to enable AUTO_MAINT, the AUTO_TBL_MAINT
parameter must be turned ON.

The idsperftune tool also checks for DB2 AUTOMATIC variables such as
LOCKLIST, NUM_IOSERVERS, NUM_IOCLEANERS are set to AUTOMATIC. If
the idsperftune tool is run in advanced mode by providing the –A and –u options,
then these variables will be set to AUTOMATIC.

Chapter 3. Tuning DB2 and LDAP caches 31

Table 1. DB2 9 parameters with their type and values

DB2 9 parameters Type Value in the stats file

NUM_IOCLEANERS AUTOMATIC AUTOMATIC / Numeric
value

NUM_IOSERVERS AUTOMATIC AUTOMATIC / Numeric
value

LOCKLIST AUTOMATIC AUTOMATIC / Numeric
value

SELF_TUNING_MEM AUTOMATIC ON / OFF

AUTO_MAINT AUTOMATIC ON / OFF

AUTO_RUNSTATS AUTOMATIC ON / OFF

AUTO_TBL_MAINT AUTOMATIC ON / OFF

IBMDEFAULTBP AUTOMATIC AUTOMATIC

LDAPBP AUTOMATIC AUTOMATIC

To monitor DB2 parameters SORTHEAP, MAXFILOP, DBHEAP,
CHNGPGS_THRESH, NUM_IOSERVERS, and NUM_IOCLEANERS, monitor
switches BUFFERPOOL and SORTHEAP must be enabled. To enable the monitor
switches, run the idsperftune tool with -m option. These switches allow DB2 to
collect additional runtime data. However, enabling these monitor switches will
have some negative impact on the performance of the directory server. If monitor
switches BUFFERPOOL and SORTHEAP are not enabled, then the status of these
parameters is displayed as “Not Collected” in the perftune_stat.log file. If monitor
switches are enabled, then the suggested values will be updated for the parameters
in the log file.

When the idsperftune tool updates directory server and DB2 configuration
parameters it does keep some history of the previous values in the
perftune_stat.log file. The initial values that existed before the first time that the
tool made updates are recorded under the INITIAL TUNING PARAMETER
VALUE section with the prefix "I_", for example, I_MAXFILOP. In addition, every
time that the tool makes updates to any DB2 configuration settings, the previous
values are stored under the OLD DB2 PARAMETER VALUE section with the prefix
"O_", for example, O_LOGFILSIZ.

The idsperftune tool provides recommendations for DB2 parameters in the
following format:
<DB2 parameters>=<Current Value>:<Recommendation>

The recommendation can be one of the following:
<Not Collected>|<OK>|<Increase>|<Decrease>

For example,
PCKCACHESZ=1533:Increase

This helps users to know the current value and the action to be taken.

Description of DB2 parameter status as mentioned above:
v Not Collected: The value of DB2 parameter is not monitored, this state will be

observed for the DB2 parameters which need monitor switches to be turned on.
v OK: The value currently used for the DB2 parameter is optimal.

32 Performance Tuning and Capacity Planning Guide

v Increase: The value of DB2 parameter must be increased to achieve optimal
performance.

v Decrease: The value of DB2 parameter must be decreased to achieve optimal
performance.

Examples
Using the idsperftune command for advanced tuning:
v To get advance tuning recommendations without setting the monitor switches

ON, run the idsperftune command with the following arguments:
idsperftune -I <instance_name> -A

v To set monitor switches for DB2 parameters to ON, run the idsperftune
command with the following arguments:
idsperftune -I <instance_name> -m

v To set monitor switches for DB2 parameters to OFF, run the idsperftune
command with the following arguments:
idsperftune -I <instance_name> -o

v To update the database with the suggested DB2 parameters in advanced tuning
without setting the monitor switches to ON, run the idsperftune command with
the following arguments:
idsperftune -I <instance_name> -A -u

v To get advance tuning recommendations with the monitor switches set to ON,
run the idsperftune command with the following arguments:
idsperftune -I <instance_name> -A -m

The monitor switches will be set to OFF once the tool completes its operation.
v To update the database with the suggested DB2 parameters in advanced tuning

with the monitor switches set to ON, run the idsperftune command with the
following arguments:
idsperftune -I <instance_name> -A -u -m

The monitor switches will be set to OFF once the tool completes its operation.

Perftune input file (perftune_input.conf)
The property file, perftune_input.conf, contains a list of inputs in the form
attribute-value pairs. If a user does not want to specify values for attributes, then
the user should leave the values as "None" for the attributes.

The administrator must update the attribute values as per their Tivoli Directory
Server environment requirements, and then run the tool by providing the property
file as an input. Administrator must ensure that the attribute names are not altered
in the property file. If the attribute names are altered, the idsperftune tool will
display appropriate error messages and will exit. On AIX, Linux, and Solaris
systems, the location of the property file, perftune_input.conf, is
<instance-home>/idsslapd-<inst-name>/etc. On Windows system, the location of
the property file, perftune_input.conf, is <instance-location>\idsslapd-<inst-
name>\etc. The format of a sample perftune_input.conf file is as follows:
#--
Admin Input
#--
Amount of system memory (%) to be allotted to TDS instance
TDS_SYS_MEM=90
Total number of entries that will reside in the directory
TDS_TOTAL_ENTRY=10000
Average size of entry (Bytes)

Chapter 3. Tuning DB2 and LDAP caches 33

TDS_AVG_ENTRY_SZ=2560
Update Frequency
1. Frequent updates expected, or
2. Only Batch Updates expected
TDS_UPDATE_FREQ=1
#Total number of Groups to be cached
TDS_GROUP_CACHE=25
Maximum number of members in a group that will be referenced frequently
TDS_GROUP_MEMBER=25000
#
#---
DB2 PARAMETER INPUT
#---
NEWLOGPATH allows you to specify a string of up to 242 bytes to change
the location where the log files are stored. Eg, NEWLOGPATH=”/newdevice”
NEWLOGPATH=None
LOGFILSIZ defines the size of each primary and secondary log file. The size
of these log files limits the number of log records that can be written to
them before they become full and a new log file is required.
LOGFILSIZ=None
DBHEAP determines the maximum memory used by the database heap.
DBHEAP=None
PCKCACHESZ is allocated out of the database shared memory, and is used for
caching of sections for static and dynamic SQL and XQuery statements on
a database.
PCKCACHESZ =None
LOGBUFSZ allows you to specify the amount of the database heap (defined
by the dbheap parameter) to use as a buffer for log records before writing
these records to disk.
LOGBUFSZ=None
MAXFILOP specifies the maximum number of file handles that can be open
for each database agent.
MAXFILOP=None
CHNGPGS_THRESH specifies the level (percentage) of changed pages at which
the asynchronous page cleaners will be started, if they are not currently active.
CHNGPGS_THRESH=None
SORTHEAP defines the maximum number of private memory pages to be used
for private sorts, or the maximum number of shared memory pages to be
used for shared sorts.
SORTHEAP=None

Perftune statistics file (perftune_stat.log)
Information gathered during the basic tuning and advanced tuning phases are
logged in the property file, perftune_stat.log. The log contains the information like,
if a particular DB2 parameter value needs to be increased or decreased in order to
get better performance out of the directory server. On AIX, Linux, and Solaris
systems, the location of the property file, perftune_stat.log, is <instance-home>/
idsslapd-<inst-name>/logs. On Windows system, the location of the property file,
perftune_stat.log, is <instance-location>\idsslapd-<inst-name>\logs. The
perftune_stat.log file is taken from a directory server instance that was running on
a Linux system, which is loaded with entries from the /opt/ibm/ldap/V6.3/
examples/sample.ldif file. The format of a sample perftune_stat.log file is as
follows:
#--
Perftune Basic tuning parameters
#--
#--
Directory Cache
#--
TDS_ENTRY_CACHE=1000
TDS_FILTER_CACHE=0
TDS_GROUP_CACHE=25
TDS_GROUP_MEMBER=25000
#---

34 Performance Tuning and Capacity Planning Guide

DB2 BUFFERPOOL (Number of pages)
#---
IBMDEFAULTBP=AUTOMATIC
LDAPBP=AUTOMATIC
#---
System memory allotted to Directory Server Instance (Kilo Bytes)
#---
SYSTEM_MEMORY=102417.12
#--
Will be set to True if enough system memory is available to
the directory instance to make directory caching effective
#--
SYS_MEM_AVL=FALSE
#--
Perftune Advance tuning parameters
#--
NEWLOGPATH allows you to specify a string of up to 242 bytes to
change the location where the log files are stored.
NEWLOGPATH=None
#--
DB2 PARAMETER STATUS
<DB2 parameters>=<Current Value>:<Recommendation>
Recommendation can be <Not Collected>/<OK>/<Increase>/<Decrease>
#--
LOGFILSIZ defines the size of each primary and secondary log file.
The size of these log files limits the number of log records that can
be written to them before they become full and a new log file is required.
LOGFILSIZ=2000:OK
PCKCACHESZ is allocated out of the database shared memory, and is used
for caching of sections for static and dynamic SQL and XQuery statements
on a database.
PCKCACHESZ=2299:Increase
LOGBUFSZ allows you to specify the amount of the database heap
(defined by the dbheap parameter) to use as a buffer for log records
before writing these records to disk.
LOGBUFSZ=98:OK
MAXFILOP specifies the maximum number of file handles that can be open
for each database agent.
MAXFILOP=Not Collected
CHNGPGS_THRESH specifies the level (percentage) of changed pages at
which the asynchronous page cleaners
will be started, if they are not currently active.
CHNGPGS_THRESH=Not Collected
SORTHEAP defines the maximum number of private memory pages to be used for
private sorts, or the maximum number of shared memory pages to be used for
shared sorts.
SORTHEAP=Not Collected
#---
DB2 parameters whose value will be automatically set by
DB2 self tuning memory manager
<DB2 parameters>=<Current Value>/<AUTOMATIC>
#---
Indicates the amount of storage that is allocated to the lock list.
There is one lock list per database and it contains the locks held by all
applications concurrently connected to the database.
LOCKLIST=AUTOMATIC
Number of I/O servers configuration parameter
NUM_IOSERVER=AUTOMATIC
Number of asynchronous page cleaners configuration parameter
NUM_IOCLEANER=AUTOMATIC
#---
DB2 AUTOMATIC PARAMETERS
<DB2 parameters>=<ON>/<OFF>
#---
SELF_TUNING_MEM determines whether the memory tuner will dynamically distribute
available memory resources as required between memory consumers that
are enabled for self tuning.

Chapter 3. Tuning DB2 and LDAP caches 35

SELF_TUNING_MEM=ON
AUTO_MAINT Automatic maintenance configuration parameter
AUTO_MAINT=ON
This parameter is the parent of all table maintenance parameters
(auto_runstats, auto_stats_prof, auto_prof_upd, and auto_reorg).
AUTO_TBL_MAINT=ON
AUTO_RUNSTATS Automatic table maintenance configuration parameter
AUTO_RUNSTATS=ON
#---
OLD TDS CACHE PARAMETER (Prior to last Update Operation)
#---
O_TDS_ENTRY_CACHE=25000
O_TDS_FILTER_CACHE=25000
O_TDS_GROUP_CACHE=25
O_TDS_GROUP_MEMBER=25000
#---
OLD DB2 PARAMETER VALUE (Prior to last Update Operation)
#---
O_IBMDEFAULTBP=AUTOMATIC
O_LDAPBP=AUTOMATIC
O_PCKCACHESZ=2299
O_LOGBUFSZ=98
O_MAXFILOP=64
O_CHNGPGS_THRESH=80
O_SORTHEAP=355
O_DBHEAP=2333
O_NEWLOGPATH=None
O_LOGFILSIZ=2000
#---
INITIAL TUNING PARAMETER VALUE (Prior to First Update Operation)
#---
I_TDS_ENTRY_CACHE=25000
I_TDS_FILTER_CACHE=25000
I_TDS_GROUP_CACHE=25
I_TDS_GROUP_MEMBER=25000
I_IBMDEFAULTBP=AUTOMATIC
I_LDAPBP=AUTOMATIC
I_PCKCACHESZ=2299
I_LOGBUFSZ=98
I_MAXFILOP=64
I_CHNGPGS_THRESH=80
I_SORTHEAP=355
I_DBHEAP=2333
I_NEWLOGPATH=None
I_LOGFILSIZ=2000

The database maintenance tool (idsdbmaint)
The idsdbmaint tool is used for performing database maintenance activities such as
DB2 index reorganization and DB2 row compression for a directory server
instance. You must stop the directory server instance before running the
idsdbmaint tool. This will ensure that the database remains in a consistent state
after all the database maintenance activities are performed by the idsdbmaint tool.

Tablespaces
Tivoli Directory Server uses four DB2 tablespaces:

Tablespace 0: SYSCATSPACE
SYSCATSPACE is used to store a description of the database and its
structure and contents. The disk requirements for this tablespace do not
change with the size of the directory. The disk space requirements are
covered by the default directory server disk requirements.

Tablespace 1: TEMPSPACE1

36 Performance Tuning and Capacity Planning Guide

TEMPSPACE1 holds temporary data for sorting and collating DB2 results.
The disk requirements for this tablespace grow at runtime if a complex
search is performed on the directory server. The disk space requirements
for this tablespace also grow with the usage of the bulkload utility.

The bulkload utility’s disk requirements for this tablespace are a maximum
of approximately 2 GB. The bulkload utility uses this maximum space
when millions of entries are loaded into the directory server.

Tablespace 2: USERSPACE1
USERSPACE1 holds the portion of the database that contains the attribute
tables and attribute table indexes for the directory server. These tables are
used for optimizing searches on specific attributes.

Tablespace 3: LDAPSPACE

LDAPSPACE holds the portion of the database that contains the LDAP
entry table and LDAP entry table indexes for the directory server. The
LDAP entry table contains a few searchable attributes, such as
Distinguished Name (DN), and a full, non-searchable definition of each
LDAP entry.

The LDAP entry table is used to return the requested attributes from an
LDAP search once the search has been narrowed down to a specific entry
or set of entries.

In IBM Tivoli Directory Server v6.2 and later versions, users can select the type of
tablespace to use with an option to choose either a system managed space (SMS)
or database managed space (DMS) tablespace. When using DMS tablespaces, Tivoli
Directory Server supports the use of raw devices. Along with file, a raw device can
also be added to the containers in DB2 9.x. This presents an alternative to adding
multiple physical disks to the containers for LDAP tablespaces (LDAPSPACE and
USERSPACE1). To know more about tablespace, see IBM Tivoli Directory Server
Version 6.3 Administration Guide.

A user can use the idsdbmaint tool to convert an SMS tablespace to a DMS
tablespace and a DMS tablespace to an SMS tablespace. The tablespace conversion
option is available only in the command line utility idsdbmaint tool and is not
supported in the user interface of the Configuration tool, idsxcfg. The tablespaces
LDAPSPACE and USERSPACE1 are considered by the idsdbmaint tool.

DB2 index reorganization
When DB2 index reorganization is performed on a table, the fragmented data is
eliminated by reconstructing the index data. During the DB2 index reorganization
the tool does the following:
v Queries DB2 sysibm.sysindexes on tables that belong to the directory server

instance and then fetches all the tables for which indexes have been defined.
v Performs index reorganization on all the indexes.
v After index reorganization is performed on the table, statistics on the table are

updated.

You can optimize the database by running the idsdbmaint command with the
index reorganization option from the command prompt. For example:

idsdbmaint -I <instance_name> -i

Chapter 3. Tuning DB2 and LDAP caches 37

DB2 row compression
DB2 row compression uses a static dictionary-based compression algorithm to
compress data by row. This allows repeating patterns that span multiple column
values within a row to be replaced with shorter symbol strings. The row
compression on a table is performed by reconstructing the compression dictionary
and compressing the information to eliminate fragmented data. Data compression
reduces space required for the directory, reduces I/O and generally improves
performance. The idsdbmaint tool performs the row compression in the following
way:
v Queries DB2 syscat.tables and fetches all the tables that belong to the directory

server instance.
v Inspects the table and fetches the row compression estimates for each table.
v If the compression estimate is more than thirty percent, then the tool does the

following:
– Alters the table to enable ROW COMPRESSION.
– Runs the DB2 REORG command on the table and builds a new compression

dictionary.
– After running DB2 REORG on the table, all the statistics on the table are

updated by running DB2 RUNSTATS on the table.
v Creates a new compression dictionary.

You can optimize the database by running the idsdbmaint command with the row
compression option from the command prompt. For example:

idsdbmaint -I <instance_name> -r

Tablespace conversion
The idsdbmaint tool performs conversion of tablespaces type, from SMS to DMS
and from DMS to SMS. The tablespaces LDAPSPACE and USERSPACE1 are
considered by the idsdbmaint tool. When the idsdbmaint command is run with -t
<ts_type>, it converts a tablespace type from SMS to DMS and from DMS to SMS
respectively depending on the type tablespace that exists and the tablespace type
to be converted. The valid values for the tablespace type are SMS and DMS. The
idsdbmaint tool calculates the database size and determines the required disk
space for the import and export of user's data. If the required disk space is not
available then the tool displays an appropriate error message and exits.

The idsdbmaint tool performs tablespace conversion from an SMS tablespace to
DMS tablespace in the following way:
v Exports all the data from the LDAPSPACE and USERSPACE1 tablespaces along

with the table definitions.
v Drops the tablespace of type SMS.
v Creates the tablespace of type DMS.
v A REGULAR tablespace using a FILE container is used, which can perform

auto-resize.
v Reconstructs all the tables within the tablespace and loads all the data into the

database.

The idsdbmaint tool performs tablespace conversion from an DMS tablespace to
SMS tablespace in the following way:
v Exports all the data from the LDAPSPACE and USERSPACE1 tablespaces along

with the table definitions.

38 Performance Tuning and Capacity Planning Guide

v Drops the tablespace of type DMS.
v Creates the tablespace of type SMS.
v A REGULAR tablespace using a PATH (directory) container is used, which can

perform auto-resize.
v Reconstructs all the tables within the tablespace and loads all the data into the

database.

Examples
Using the idsdbmaint command for tablespace conversion:
v To convert an SMS tablespace to a DMS tablespace and to store the exported

data in a directory, mydata, run the following command:
idsdbmaint -I <instance_name> -t DMS -k

<instance_location>/<instance_name>/mydata

v To specify a file container for LDAPSPACE tablespaces while converting from an
SMS tablespace to a DMS tablespace and to store the exported data in a
directory, run the idsdbmaint command with the following arguments:
idsdbmaint –I <instance_name> -t DMS -l

/disk/32K_ldapspace_container/ldapspace -k /disk/mydata

v To specify a file container for USERSPACE1 tablespaces while converting from
an SMS tablespace to a DMS tablespace and to store the exported data in a
directory, run the idsdbmaint command with the following arguments:
idsdbmaint –I <instance_name> -t DMS -u

/disk/container/userspace1 -k /disk/mydata

v To specify a file container for LDAPSPACE and USERSPACE1 tablespaces while
converting from SMS to DMS and to store the exported data in a directory, run
the idsdbmaint command with the following arguments:
idsdbmaint –I <instance_name> -t DMS

-l /disk/32K_ldapspace_container/ldapspace
-u /disk/container/userspace1 -k /disk/mydata

v To convert a DMS tablespace to an SMS tablespace and to store the exported
data in a directory, mydata, run the following command:
idsdbmaint -I <instance_name> -t SMS -k

<instance_location>/<instance_name>/mydata

v To specify a container path for LDAPSPACE tablespaces while converting from
DMS to SMS and to store the exported data in a directory, run the idsdbmaint
command with the following arguments:
idsdbmaint –I <instance_name> -t SMS

-l /disk/32K_ldapspace_container/ -k /disk/mydata

v To specify a container path for USERSPACE1 tablespaces while converting from
DMS to SMS and to store the exported data in a directory, run the idsdbmaint
command with the following arguments:
idsdbmaint –I <instance_name> -t SMS

-u /disk/userspace1_container/–k /disk/mydata

v To specify a file container for LDAPSPACE and USERSPACE1 tablespaces while
converting from DMS to SMS and to store the exported data in a directory, run
the idsdbmaint command with the following arguments:
idsdbmaint –I <instance_name> -t SMS

-l /disk/32K_ldapspace_container/
-u /disk/userspace1_container/ -k /disk/mydata

Note: The directory specified with the -k option must have read and write access
for the DB2 instance owner.

Chapter 3. Tuning DB2 and LDAP caches 39

Optimization and organization (idsrunstats, reorgchk and reorg)
DB2 uses a sophisticated set of algorithms to optimize the access to data stored in
a database. These algorithms depend upon many factors, including the
organization of the data in the database, and the distribution of that data in each
table. Distribution of data is represented by a set of statistics maintained by the
database manager.

In addition, IBM Tivoli Directory Server creates a number of indexes for tables in
the database. These indexes are used to minimize the data accessed in order to
locate a particular row in a table.

In a read-only environment, the distribution of the data changes very little.
However, with updates and additions to the database, it is not uncommon for the
distribution of the data to change significantly. Similarly, it is quite possible for
data in tables to become ordered in an inefficient manner.

To remedy these situations, DB2 provides tools to help optimize the access to data
by updating the statistics and to reorganize the data within the tables of the
database.

Optimization
Optimizing the database updates statistics related to the data tables, which
improves performance and query speed. Optimize the database periodically or
after heavy database updates (for example, after importing database entries). The
Optimize database task in the IBM Tivoli Directory Server Configuration Tool uses
the idsrunstats command to update statistical information used by the query
optimizer for all the LDAP tables.

Note: The reorgchk command also updates statistics. If you are planning to do a
reorgchk, optimizing the database is unnecessary. See “Database
organization (reorgchk and reorg)” on page 41 for more information about
the reorgchk command.

To optimize the database using the Configuration Tool:
1. Start the Configuration Tool by typing idsxcfg on the command line.
2. Click Optimize database on the left side of the window.
3. On the Optimize database window, click Optimize.

After a message displays indicating the database was successfully optimized, you
must restart the server for the changes to take effect.

The idsrunstats tool is used to update the DB2 system catalog statistics about the
physical characteristics of tables and associated indexes in the database of a
directory server instance. The physical characteristics of a table include number of
records, number of pages, and average record length. To collect database statistics,
the following flags are passed to the db2Runstats API,
DB2RUNSTATS_ALL_COLUMNS|DB2RUNSTATS_ALL_INDEXES. The idsrunstats
tool can be run against a directory server instance even when the instance is up
and running.

To optimize the database using the command line, run the following command:
idsrunstats –I <instance_name>

where, <instance_name> is an optional parameter.

40 Performance Tuning and Capacity Planning Guide

To know more about the usage of the idsrunstats or runstats command, see IBM
Tivoli Directory Server Version 6.3 Command Reference.

Viewing DB2 system statistics settings
The db2look command can be used to see reports of all the system statistic settings
in the database. Use the mimic option, -m, to produce a report that contains the
DB2 commands that reproduce the current system statistic settings. Switch the user
context as database instance owner before running the command.
db2look -m -d ldapdb2 -u ldapdb2 -o output_file

where, ldapdb2 is the database name, and output_file is the file name with location
for storing the results.

Database organization (reorgchk and reorg)
Tuning the organization of the data in DB2 using the reorgchk and reorg
commands might help to improve performance and might save disk space.

The reorgchk command updates statistical information to the DB2 optimizer to
improve performance, and reports statistics on the organization of the database
tables.

The reorg command may be used based on the recommendations from reorgchk to
reorganize tablespaces to improve access performance and to reorganize indexes so
that they are more efficiently clustered. The reorgchk and reorg commands can
improve both search and update operation performance.

Performing a reorgchk
After a number of updates have been performed against DB2, table indexes can
become sub-optimal and performance can degrade. Correct this situation by
performing a DB2 reorgchk as follows:
db2 connect to ldapdb2
db2 reorgchk update statistics on table all

Where ldapdb2 is the name of your database.

To generate a reorgchk output file (recommended if you plan to run the reorg
command) add the name of the file to the end of the command, for example:
db2 reorgchk update statistics on table all > reorgchk.out

The following is a sample reorgchk report:
db2 => reorgchk current statistics on table all

Table statistics:

F1: 100 * OVERFLOW / CARD < 5
F2: 100 * TSIZE / ((FPAGES-1) * (TABLEPAGESIZE-76)) > 70
F3: 100 * NPAGES / FPAGES > 80

CREATOR NAME CARD OV NP FP TSIZE F1 F2 F3 REORG

--

LDAPDB2 ACLPERM 2 0 1 1 138 0 - 100 ---

LDAPDB2 ACLPROP 2 0 1 1 40 0 - 100 ---

LDAPDB2 ALIASEDOBJECT - - - - - - - - ---

Chapter 3. Tuning DB2 and LDAP caches 41

LDAPDB2 AUDIT 1 0 1 1 18 0 - 100 ---

LDAPDB2 AUDITADD 1 0 1 1 18 0 - 100 ---

LDAPDB2 AUDITBIND 1 0 1 1 18 0 - 100 ---

LDAPDB2 AUDITDELETE 1 0 1 1 18 0 - 100 ---

LDAPDB2 AUDITEXTOPEVENT 1 0 1 1 18 0 - 100 ---

LDAPDB2 AUDITFAILEDOPONLY 1 0 1 1 18 0 - 100 ---

LDAPDB2 AUDITLOG 1 0 1 1 77 0 - 100 ---

...

SYSIBM SYSINDEXCOLUSE 480 0 6 6 22560 0 100 100 ---

SYSIBM SYSINDEXES 216 114 14 28 162216 52 100 50 *-*

...

SYSIBM SYSPLAN 79 0 6 6 41554 0 100 100 ---

SYSIBM SYSPLANAUTH 157 0 3 3 9106 0 100 100 ---

SYSIBM SYSPLANDEP 35 0 1 2 5985 0 100 50 --*

--

Index statistics:

F4: CLUSTERRATIO or normalized CLUSTERFACTOR > 80
F5: 100 * (KEYS * (ISIZE+8) + (CARD-KEYS) * 4) / (NLEAF * INDEXPAGESIZE) > 50
F6: (100-PCTFREE) * (INDEXPAGESIZE-96) / (ISIZE+12) ** (NLEVELS-2) * (INDEXPAGES
IZE-96) / (KEYS * (ISIZE+8) + (CARD-KEYS) * 4) < 100

CREATOR NAME CARD LEAF LVLS ISIZE KEYS F4 F5 F6 REORG
--

Table: LDAPDB2.ACLPERM
LDAPDB2 ACLPERM_INDEX 2 1 1 6 2 100 - - ---
Table: LDAPDB2.ACLPROP
LDAPDB2 ACLPROP_INDEX 2 1 1 6 2 100 - - ---
Table: LDAPDB2.ALIASEDOBJECT
LDAPDB2 ALIASEDOBJECT - - - - - - - - ---
LDAPDB2 ALIASEDOBJECTI - - - - - - - - ---
LDAPDB2 RALIASEDOBJECT - - - - - - - - ---
Table: LDAPDB2.AUDIT
LDAPDB2 AUDITI 1 1 1 4 1 100 - - ---
Table: LDAPDB2.AUDITADD
LDAPDB2 AUDITADDI 1 1 1 4 1 100 - - ---
Table: LDAPDB2.AUDITBIND
LDAPDB2 AUDITBINDI 1 1 1 4 1 100 - - ---
Table: LDAPDB2.AUDITDELETE
LDAPDB2 AUDITDELETEI 1 1 1 4 1 100 - - ---
Table: LDAPDB2.AUDITEXTOPEVENT
...
Table: LDAPDB2.SN
LDAPDB2 RSN 25012 148 2 14 25012 99 90 0 ---
LDAPDB2 SN 25012 200 3 12 25012 99 61 119 --*
LDAPDB2 SNI 25012 84 2 4 25012 99 87 1 ---
...
Table: LDAPDB2.TITLE

42 Performance Tuning and Capacity Planning Guide

LDAPDB2 TITLEI - - - - - - - - ---
Table: LDAPDB2.UID
LDAPDB2 RUID 25013 243 3 17 25013 0 62 79 *--
LDAPDB2 UID 25013 273 3 17 25013 100 55 79 ---
LDAPDB2 UIDI 25013 84 2 4 25012 100 87 1 ---
Table: LDAPDB2.UNIQUEMEMBER
LDAPDB2 RUNIQUEMEMBER 10015 224 3 47 10015 1 60 44 *--
LDAPDB2 UNIQUEMEMBER 10015 284 3 47 10015 100 47 44 -*-
LDAPDB2 UNIQUEMEMBERI 10015 14 2 4 7 100 69 8 ---

...
Table: SYSIBM.SYSFUNCTIONS
SYSIBM IBM127 141 1 1 13 141 65 - - *--
SYSIBM IBM25 141 2 2 34 141 100 72 60 ---
SYSIBM IBM26 141 2 2 32 141 78 68 63 *--
SYSIBM IBM27 141 1 1 23 68 80 - - *--
SYSIBM IBM28 141 1 1 12 2 99 - - ---
SYSIBM IBM29 141 1 1 4 141 100 - - ---
SYSIBM IBM30 141 3 2 59 141 78 76 38 *--
SYSIBM IBM55 141 2 2 34 141 99 72 60 ---
...
--

CLUSTERRATIO or normalized CLUSTERFACTOR (F4) will indicate REORG is necessary
for indexes that are not in the same sequence as the base table. When multiple
indexes are defined on a table, one or more indexes may be flagged as needing
REORG. Specify the most important index for REORG sequencing.

Using the statistics generated by reorgchk, run reorg to update database table
organization. See “Performing a reorg.”

Keep in mind that reorgchk needs to be run periodically. For example, reorgchk
might need to be run after a large number of updates have been performed. Note
that LDAP tools such as ldapadd, ldif2db, and bulkload can potentially do large
numbers of updates that require a reorgchk. The performance of the database
should be monitored and a reorgchk performed when performance starts to
degrade. See “Monitoring performance” on page 63 for more information.

reorgchk must be performed on all LDAP replicas because each replica uses a
separate database. The LDAP replication process does not include the propagation
of database optimizations.

Because LDAP caches prepared DB2 statements, you must stop and restart
ibmslapd for DB2 changes to take effect.

Performing a reorg
After you have generated organizational information about the database using
reorgchk, the next step in reorganization is finding the tables and indexes that
need reorganizing and attempting to reorganize them. Reorganizing a table can
take a long time. The time it takes increases as the DB2 database size increases.

In general, reorganizing a table takes more time than updating statistics. Therefore,
it is best to update statistics first and see if that sufficiently improves performance.

To reorganize database table information:
1. If you have not done so already, run reorgchk:

db2 reorgchk update statistics on table all > reorgchk.out

Chapter 3. Tuning DB2 and LDAP caches 43

The reorgchk update statistics report has two sections; the first section is the
table information and the second section is the indexes. An asterisk in the last
column indicates a need for reorganization.

2. To reorganize the tables with an asterisk in the last column:
db2 reorg table table_name

where table_name is the name of the table to be reorganized; for example,
LDAPDB2.LDAP_ENTRY.
To reorganize a table to match the order of a particular index, use the following
syntax:
db2 reorg table table_name index index_name

where,
v table_name is the name of the table; for example, LDAPDB2.LDAP_ENTRY.
v index_name is the name of the index; for example, LDAPDB2.SNI.
Generally speaking, because most data in LDAP is accessed by index,
reorganizing tables is usually not as beneficial as reorganizing indexes.

3. To reorganize the indexes with an asterisk in the last column:
db2 reorg index index_name

Some guidelines for performing a reorganization are:
v If the number on the column that has an asterisk is close to the recommended

value described in the header of each section and one reorganization attempt has
already been done, you can probably skip a reorganization on that table or
index.

v In the table LDAPDB2.LDAP_ENTRY there exists a LDAP_ENTRY_TRUNC
index and a SYSIBM.SQL index. Preference should be given to the SYSIBM.SQL
index if attempts to reorganize them seem to alternate between one or the other
needing reorganization.

v When an attribute length is defined to be less than or equal to 240 bytes, the
attribute table contains three columns: EID, attribute and reversed attribute
columns. In this case, the forward index is created using the EID and attribute
columns as index keys. For example, the attribute SN is defined to have the
maximum length which is less than or equal to 240 bytes, so the attribute table
contains the EID, SN and RSN columns and the following indexes are created
for this attribute table:
LDAPDB2.RSN <------ A reverse index whose defined index keys are the EID
and RSN columns.
LDAPDB2.SN <------ A forward index whose defined index keys are the EID
and SN columns.
LDAPDB2.SNI <------ An update index whose defined index key is the EID column.

v Reorganize all the attribute tables that you want to use in searches. In most
cases you will want to reorganize to the forward index, but in cases with
searches beginning with ‘*’, reorganize to the reverse index.

v When an attribute length is defined to be greater than 240 bytes, the attribute
table contains four columns: EID, attribute, truncated attribute and reversed
truncated attribute columns. In this case, the forward index is created using the
EID and truncated attribute columns as index keys. For example, the attribute
CN is defined to have the maximum length which is greater than 240 bytes, so
the attribute table contains the EID, CN, CN_T and RCN_T columns and the
following indexes are created for this attribute table:

44 Performance Tuning and Capacity Planning Guide

LDAPDB2.RCN <------ A reverse index whose defined index keys are the EID
and RCN_T columns.
LDAPDB2.CN <------ A forward index whose defined index keys are the EID
and CN_T columns.
LDAPDB2.CNI <------ An update index whose defined index key is the EID column.

The following is another example showing reverse, forward, and update indexes
example:
Table: LDAPDB2.SECUUID
LDAPDB2 RSECUUID <— This is a reverse index
LDAPDB2 SECUUID <— This is a forward index
LDAPDB2 SECUUIDI <— This is an update index

DB2 indexes
DB2 indexes helps in improving the performance of search operations against
Tivoli Directory Server on the attributes that are indexed. Indexing results in a
considerable reduction in the amount of time it takes to locate requested data. DB2
indexes also improve the performance of directory operations such as start time,
finding the subtree of a LDAP entry, and finding all children of an LDAP entry.
For this reason, it can be very beneficial from a performance standpoint to index
all relevant attributes used in searches. Tivoli Directory Server comes with set of
attributes that are indexed by default.

The attributes that are indexed by default can be found in the directory schema
files. An attribute with the keyword EQUALITY in the schema files indicates the
attribute is indexed. Attributes can also be indexed issuing DB2 commands on the
DB2 table that implement the attribute.

Use the following DB2 commands to verify that a particular index is defined. In
the following example, the index being checked is for the attribute seeAlso:
db2 connect to database_name
db2 list tables for all | grep -i seeAlso
db2 describe indexes for table database_name.seeAlso

where database_name is the name of your database.

If the last command does not return three entries, the index is not properly
defined. The last command should return the following results:
IndexSchema Index Name Unique Rule Number of Columns
------------- ------------------- ---------- -------------
LDAPDB2 SEEALSOI D 1
LDAPDB2 SEEALSO D 2
LDAPDB2 RSEEALSO D 2

3 record (s) selected.

To have IBM Tivoli Directory Server create an index for an attribute, do one of the
following:
v To create an index using the Web Administration Tool:

1. Expand Schema management in the navigation area, and click Manage
attributes.

2. Click Edit attribute.
3. On the IBM extensions tab, select the Equality check box under Indexing

rules.
v To create an index from the command line, issue the following command:

ldapmodify -D cn=root -w root -i addindex.ldif

Chapter 3. Tuning DB2 and LDAP caches 45

The addindex.ldif file should look like the following example for the "seeAlso"
attribute:
dn: cn=schema
changetype: modify
replace: attributetypes
attributetypes: (2.5.4.34
NAME ’seeAlso’
DESC ’Identifies another directory server entry that may
contain information related to this entry.’
SUP 2.5.4.49
EQUALITY 2.5.13.1
USAGE userApplications)
-
replace: ibmattributetypes
ibmattributetypes: (2.5.4.34
DBNAME(’seeAlso’ ’seeAlso’)
ACCESS-CLASS normal
LENGTH 1000
EQUALITY)

It is important to run the runstats command on a table after an index has been
created. The runstats command provides statistical information to the DB2
optimizer that aids the optimizer in making decisions about optimizing searches on
that table.

To know more on indexing, see the section DB2 index reorganization.

DB2 SELECTIVITY
There are two alternative ways that Tivoli Directory Server influences the DB2
optimizer to make better choice about how to access data in the LDAP tables.
These are controlled by environment variables, as follows:

LDAP_MAXCARD = YES | ONCE | NO

v If set to YES or by default, if neither environment variable is set, DB2's
cardinality statistic for the LDAP_DESC table is artificially adjusted to
prevent expensive scans of large subtree data. This setting of the
cardinality is done at server startup and periodically thereafter.

v If set to ONCE, then the cardinality is set once during each server
startup but not subsequently while the server is running.

v If set to NO, then the cardinality statistic is not changed.

IBMSLAPD_USE_SELECTIVITY = NO | YES

v If not set or set to NO, then selectivity is not used to influence DB2's
access plans.

v If set to YES and LDAP_MAXCARD is not set to YES, then selectivity is
used to influence DB2's decisions about accessing data during large
subtree searches. The use of selectivity is explained further in the
following paragraphs.

Note: If LDAP_MAXCARD is set to YES and IBMDSLAPD_USE_SELECTIVITY is
set to YES, the server will log a message and SELECTIVITY will not be
used.

You can improve the performance of subtree searches on search bases that are high
in a directory tree by using SELECTIVITY in Structured Query Language (SQL).
The inclusion of SELECTIVITY in SQL enables the DB2 optimizer in the formation
of access plans to resolve the search request (identifying which tables to access first

46 Performance Tuning and Capacity Planning Guide

during searches). Determination of the entries that are high in the tree (having a
large number of children) is based on DB2 statistics. If a subtree search is done
using one of these entries as the search base, the SELECTIVITY clause will be
added to the SQL query. This causes DB2 to use the search filter to narrow down
the search results before reading the table that identifies the entries that are
descendants of a base in a search.

To use SELECTIVITY, the DB2 registry for the database instance must have
DB2_SELECTIVITY set to YES. This is in addition to the environment variables
described above. This is done when creating a database instance or while
migrating from previous versions.

Examples
To check the status of the DB2_SELECTIVITY for a directory server instance,
myinst1:
su – myinst1
db2 connect to myinst1
db2set –all | grep –i selectivity

To set DB2_SELECTIVITY explicitly for the directory server instance, myinst1, issue
the following command:
su – myinst1
db2 connect to myinst1
db2set DB2_SELECTIVITY=YES

Other DB2 configuration parameters
Performance benefits can come from setting other DB2 configuration parameters,
such as DBHEAP and LOGFILSIZ. To set the DB2 configuration parameters use the
following syntax:
db2 update database configuration for database name using \
parm name parm value
db2 force applications all
db2stop
db2start

where database name is the name of your database and where parm name is the
parameter to change and parm value is the value it is to be assigned. The
idsperftune tool also provides an interface using which the DB2 configuration
parameters can be set. To update the DB2 configuration parameter with the values
provided in perftune input file, perftune_input.conf, run the following command:
idsperftune -I <instance_name> -A -u update

To get DB2 configuration parameters and their values, you need to use the DB2
provided commands. The current setting of parameters can be obtained by issuing
the following command:
db2 get database configuration for database name

where database name is the name of your database. For example, the following is
the output showing the default settings after configuring the Tivoli Directory
Server instance ldapdb2:
db2 get database configuration for ldapdb2 | egrep ’HEAP|MAXLOCKS|MINCOMMIT’

Percent. of lock lists per application (MAXLOCKS) = AUTOMATIC(98)
Sort heap thres for shared sorts (4KB) (SHEAPTHRES_SHR) = AUTOMATIC(273)
Sort list heap (4KB) (SORTHEAP) = AUTOMATIC(54)
Database heap (4KB) (DBHEAP) = AUTOMATIC(2579)

Chapter 3. Tuning DB2 and LDAP caches 47

Utilities heap size (4KB) (UTIL_HEAP_SZ) = 85239
SQL statement heap (4KB) (STMTHEAP) = AUTOMATIC(4096)
Default application heap (4KB) (APPLHEAPSZ) = AUTOMATIC(1280)
Statistics heap size (4KB) (STAT_HEAP_SZ) = AUTOMATIC(4384)
Group commit count (MINCOMMIT) = 1

These parameters do not required to be modified from their default settings. If you
set MINCOMMIT to anything other than 1, you might get poor performance
results. These parameters can be changed by using the commands of following
format:
db2 update db cfg for ldapdb2 using <parm_name> <parm_value>
db2 terminate
db2 force applications all

where parm_name is the name of the parameter shown in the output from the get
database configuration command at the left hand side of the equals sign, and
parm_value is the new value. Incorrect settings for some database parameters can
cause database failures. If this is suspected, check the following files for DB2 error
messages:

For Tivoli Directory Server 6.0 and later

v db2instance_owner_home_directory/idsslapd-instancename/logs/
db2cli.log

v db2instance_owner_home_directory/sqllib/db2dump/db2diag.log

This command returns the settings of other DB2 configuration parameters as well.
The following command also shows the DB2 configuration parameters for the
entire database instance:
db2 get database manager configuration

Changes to DB2 configuration parameters do not take effect until the database is
restarted with db2stop and db2start.

Note: If applications are currently connected to the database, you must also do a
db2 force applications all command prior to the db2stop.

For tuning DB2 buffer pools, users can use the DB2 utility, DB2
AUTOCONFIGURE. This utility calculates and provides recommended values for
the DB2 buffer pools, database configuration, and database manager configuration
parameters. For example, DB2 AUTOCONFIGURE with NONE as the argument
displays the recommended changes in the configuration but does not apply them.
db2 AUTOCONFIGURE USING MEM_PERCENT 60 WORKLOAD_TYPE simple NUM_STMTS 500
ADMIN_PRIORITY performance IS_POPULATED YES NUM_LOCAL_APPS 20 NUM_REMOTE_APPS 20
ISOLATION RR BP_RESIZEABLE YES APPLY NONE

The utility with DB AND DBM as the arguments display and apply the
recommended changes to the buffer pool settings, database manager configuration,
and the database configuration.
db2 AUTOCONFIGURE USING MEM_PERCENT 60 WORKLOAD_TYPE simple NUM_STMTS 500
ADMIN_PRIORITY performance IS_POPULATED YES NUM_LOCAL_APPS 20 NUM_REMOTE_APPS 20
ISOLATION RR BP_RESIZEABLE YES APPLY DB AND DBM

To know more about the utility, see AUTOCONFIGURE command using the
ADMIN_CMD.

48 Performance Tuning and Capacity Planning Guide

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp?topic=/com.ibm.db2.luw.sql.rtn.doc/doc/r0023568.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp?topic=/com.ibm.db2.luw.sql.rtn.doc/doc/r0023568.html

For a list of DB2 parameters that affect performance, visit the DB2 9.7 Information
Center at the following Web site: http://publib.boulder.ibm.com/infocenter/
db2luw/v9r7/index.jsp.

Note: If DB2 recognizes that a parameter is configured insufficiently, the problem
is posted to the diagnostic log (db2diag.log). For example, if the DB2 buffer
pools are too large, DB2 overrides the buffer pool settings and uses a
minimal configuration. No notice of the change in buffer pool sizes is given
except in the diagnostic log, so it is important to view the log if you are
experiencing poor performance. The db2diag.log file is located in the
sqllib/db2dump directory under the instance owner's home directory. For
example, the ldapdb2 instance can find the db2diag.log file in the
/home/ldapdb2/sqllib/db2dump directory.

Database backup and restore considerations
You can use the db2 backup and db2 restore commands that are provided by IBM
DB2 for backing up and restoring db2 database associated with the Tivoli Directory
Server. The advantage to using these commands is performance and flexibility for
specifying the location of the database files. The db2 restore command can be used
to distribute the database across multiple disks or to simply move the database to
another directory. An important consideration when using db2 backup and db2
restore commands is the preservation of DB2 configuration parameters and system
statistics optimizations in the backed-up database. The restored database has the
same performance optimizations as the backed-up database. This is not the case
with LDAP db2ldif, ldif2db, or bulkload.

However, when using the database backup and restore commands it is important
to keep in mind that when you restore over an existing database, any tuning that
has been done on that existing database is lost. Check all DB2 configuration
parameters after performing a restore. Also, if you do not know whether a db2
runstats was performed before the database was backed up, tune the DB2 system
statistics after the restore. The DB2 commands to perform backup and restore
operations are as follows:
db2 force applications all
db2 backup db dsrdbm01 to directory_or_device
db2 restore db dsrdbm01 from directory_or_device replace existing

where, dsrdbm01 is the name of Tivoli Directory Server instance, and
directory_or_device is the name of a directory or device where the backup is stored.

When performing a db2 restore operation, user might see file permission error. The
reason for the error and steps to prevent the error are as follows:
v The DB2 instance owner does not have permission to access the specified

directory and file. One way to resolve this is to change directory and file
ownership to the DB2 instance owner. For example, enter the following:
chown dsrdbm01 file_or_device

v The backed-up database is distributed across multiple directories, and those
directories do not exist on the target system of the restore.
Distributing the database across multiple directories is accomplished with a
redirected restore. To solve this problem, either create the same directories on the
target system or perform a redirected restore to specify the proper directories on
the new system. If creating the same directories, ensure that the owner of the
directories is the DB2 instance owner, the dsrdbm01 user.

Chapter 3. Tuning DB2 and LDAP caches 49

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

50 Performance Tuning and Capacity Planning Guide

Chapter 4. AIX operating system tuning

This chapter discusses the following performance tuning tasks for the AIX
operating system:
v Enabling large files
v Setting MALLOCTYPE
v Setting other environment variables
v Viewing ibmslapd environment variables

Enabling large files
The standard file system on AIX has a 2 GB file size limit, regardless of the ulimit
setting. The underlying AIX operating system files that hold the contents of a large
directory can grow beyond the default size limits imposed by the AIX operating
system. If the size limits are reached, the directory ceases to function correctly. The
following steps make it possible for files to grow beyond default limits on an AIX
operating system:
1. When you create the file systems that are expected to hold the directory's

underlying files, you should create them as Enhanced Journaled File Systems or
as Journaled File Systems (JFS2) with Large File Enabled. The file system
containing the DB2 instance's home directory, and if bulkload is used the file
system containing the bulkload temporary directory are file systems that can
be created this way.

Note: The default path is:
<instance_home>/tmp

2. Set the soft file size limit for the root, ldap, and the DB2 instance owner users
to -1. A soft file size limit of -1 for a user specifies the maximum file size for
that user as unlimited. The soft file size limit can be changed using the smitty
chuser command. Each user must log off and log back in for the new soft file
size limit to take effect. You must also restart DB2.

For additional information and file system options, see AIX documentation.

Setting MALLOCTYPE
Set the MALLOCTYPE environment variable as follows:

On all AIX 5.x versions
Set MALLOCTYPE as follows:
export MALLOCTYPE=buckets

Note: If you want to use MALLOCTYPE buckets, you must use ML03 (contains
the fix for APAR IY50668) or higher. You can get this from IBM Support
(www.ibm.com/support). If you are using MALLOCTYPE buckets, you
must set ulimits for the LDAP instance to the following:
ulimit -m unlimited
ulimit -d unlimited

You can find more information about MALLOCTYPE in the AIX documentation.

Particularly for SMP systems, you can have the following MALLOC setting:

© Copyright IBM Corp. 2003, 2010 51

v MALLOCMULTIHEAP=1 (for SMP systems)

Setting other environment variables
You can enhance the performance of AIX system by setting the
AIXTHREAD_SCOPE and NODISCLAIM environment as shown in the following
commands. Check the AIX documentation to see if these settings might be right for
your installation.

AIXTHREAD_SCOPE
To set AIXTHREAD_SCOPE, use the following command:
export AIXTHREAD_SCOPE=S

NODISCLAIM
To set NODISCLAIM, use the following command:
export NODISCLAIM=TRUE

SPINLOOPTIME
For SMP systems, use the following:
export SPINLOOPTIME=650

Viewing ibmslapd environment variables (AIX operating system only)
To view the environment settings and variables for your ibmslapd process, run the
following command:
ps ewww PID | tr ’ ’ ’\012’ | grep = | sort

where PID is the ibmslapd process ID.

Example output:
ACLCACHE=YES
ACLCACHESIZE=25000
AIXTHREAD_SCOPE=S
AUTHSTATE=compat
A__z=!
CLASSPATH=/home/ldapdb2/sqllib/java/db2java.zip:/home/ldapdb2/sqllib/java/
db2jcc.jar:/home/ldapdb2/sqllib/function:/home/ldapdb2/sqllib/java/
db2jcc_license_cisuz.jar:/home/ldapdb2/sqllib/java/db2jcc_license_cu.jar:.
DB2CODEPAGE=1208
DB2INSTANCE=ldapdb2
HOME=/
IDS_LDAP_HOME=/opt/IBM/ldap/V6.3
LANG=en_US
LC__FASTMSG=true
LD_LIBRARY_PATH=/home/ldapdb2/sqllib/lib
LIBPATH=/opt/IBM/ldap/V6.3/lib64:/usr/lib:/home/ldapdb2/idsslapd-ldapdb2/
db2instance/lib:/opt/IBM/ldap/V6.3/db2/lib64:/usr/lib:/lib:/home/ldapdb2/
sqllib/lib:.
LOCPATH=/usr/lib/nls/loc
LOGIN=root
LOGNAME=root
MAIL=/usr/spool/mail/root
MAILMSG=[YOU
MALLOCTYPE=buckets
NLSPATH=/opt/IBM/ldap/V6.3/nls/msg/%L/%N:/opt/IBM/ldap/V6.3/nls/msg/%L/%N.cat:/
usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%L/%N.cat
NODISCLAIM=TRUE
ODBCCONN=15
ODMDIR=/etc/objrepos
PATH=/opt/IBM/ldap/V6.3/sbin:/opt/IBM/ldap/V6.3:/usr/bin:/etc:/usr/sbin:/usr/
ucb:/usr/bin/X11:/sbin:/usr/java14/jre/bin:/usr/java14/bin:/usr/java131/jre/
bin:/usr/java131/bin:/home/ldapdb2/sqllib/bin:/home/ldapdb2/sqllib/adm:/

52 Performance Tuning and Capacity Planning Guide

home/ldapdb2/sqllib/misc
PWD=/home/ldapdb2/idsslapd-ldapdb2/workdir
RDBM_CACHE_BYPASS_LIMIT=100
RDBM_CACHE_SIZE=25000
RDBM_FCACHE_SIZE=25000
SHELL=/usr/bin/ksh
SSH_CLIENT=9.48.85.122
SSH_CONNECTION=9.48.85.122
SSH_TTY=/dev/pts/1
TERM=xterm
TISDIR=/opt/IBM/ldap/V6.3
TZ=CST6CDT
USER=root
VWSPATH=/home/ldapdb2/sqllib
_=/opt/IBM/ldap/V6.3/sbin/64/ibmslapd
instname=ldapdb2
location=/home/ldapdb2

Chapter 4. AIX operating system tuning 53

54 Performance Tuning and Capacity Planning Guide

Chapter 5. Hardware tuning

This chapter contains some suggestions for improving disk drive performance.

Disk speed improvements
With millions of entries in an LDAP server, it can become impossible to cache all of
them in memory. Even if a smaller directory size is cacheable, update operations
must go to disk. The speed of disk operations is important. Here are some
considerations for helping to improve disk drive performance:
v Use fast disk drives
v Use a hardware write cache
v Spread data across multiple disk drives
v Spread the disk drives across multiple I/O controllers
v Put log files and data on separate physical disk drives
v Use raw devices for storing the tablespace data

© Copyright IBM Corp. 2003, 2010 55

56 Performance Tuning and Capacity Planning Guide

Chapter 6. IBM Tivoli Directory Server features

The sections in this chapter briefly describe the following additional
performance-related IBM Tivoli Directory Server features.
v Bulk loading (bulkload)
v Replication
v Monitoring Performance
v When to configure the LDAP change log

Bulkload
The bulkload utility accepts many command line options introduced in previous
releases for performance tuning. Many of these tuning options are deprecated. The
default for the following options are optimal and should not be specified.

-A <yes|no>
Specifies whether to process the ACL information contained in the LDIF
file. The default is yes. The no parameter loads the default acls.

-c | -C <yes|no>
Allows you to skip index recreation. For example, if you are running
successive idsbulkloads and you want to skip recreation between loads,
you can postpone index creation until the last idsbulkload. Issue the final
idsbulkload with -c yes.

-e <yes|no>
Drop indexes before load.

Effects of using the -k option
The -k option enables users to bulkload their data in smaller chunks. It is
especially useful for systems where memory is limited. What happens when
utilizing this option is that the parsing and corresponding loading is done in
smaller increments.

Note: Saving on memory by specifying small chunksize can result in the user
experiencing longer bulkload times.

© Copyright IBM Corp. 2003, 2010 57

This graph illustrates the effects on memory usage. As the chunk size increases, the
amount of memory utilized increases.

This graph illustrates that as the chunk size increases, the load time decreases. The
recommendation is to use chunk sizes of one million entries at least.

Figure 7. Effects of using the -k option

Figure 8. Effects of using the -k option

58 Performance Tuning and Capacity Planning Guide

Replication tuning
Replication is a technique used by directory servers to improve performance,
availability, and reliability. The replication process synchronizes data stored in
multiple directory servers.

Using multi-threaded (asynchronous) replication, administrators can replicate using
multiple threads. These features were added to improve overall throughput of
replication. For more information about asynchronous replication, see
"Multi-threaded (asynchronous) replication" in the IBM Tivoli Directory Server
Version 6.3 Administration Guide.

Anyone with a replication backlog might consider switching to multi-threaded
(asynchronous) replication. Candidate environments can include the following:
v A high update rate
v No downlevel servers
v Common AES salt and synchronization if encryption is AES and passwords are

updated often
v Small fanout (for example, 8 connections per agreement with 24 replicas might

be too complicated depending on system configuration)
v Available servers and reliable network
v Real-time data consistency is not critical
v All replication schedules are immediate
v Multiprocessor machines

Multi-threaded (asynchronous) replication is difficult to administer if servers or
networks are not reliable.

When errors occur, the errors are logged and can be replayed by the administrator,
but the error logs must be monitored closely. The following is a search to show the
replication backlog for all agreements supplied by one server:
ldapsearch -h supplier-host -D cn=admin -w ? -s sub -b <replication_context>
objectclass=ibm-replicationagreement
ibm-replicationpendingchangecount ibm-replicationstate

If the replication state is active, and the pending count is growing, there is a
backlog that won't decrease unless the update rate decreases or the replication
mode is changed from synchronous to asynchronous (multi-threaded).

Replication also adds to the workload on the master server where the updates are
first applied. In addition to updating its copy of the directory data, the master
server must send the changes to all replica servers. If your application or users do
not depend on immediate replication, then careful scheduling of replication to
avoid peak activity times will help minimize the impact to throughput on the
master server. See "Creating replication schedules" in the IBM Tivoli Directory Server
Version 6.3 Administration Guide.

The following are areas where tuning adjustment can be made to improve
performance:
v Number of replication threads per supplier and consumer
v Replication context cache size
v Replication ready size limit

Chapter 6. IBM Tivoli Directory Server features 59

Number of replication threads
The number of replication threads (ibm-replicaconsumerconnections) attribute
represents the number of connections used for each replication agreement. In
testing, as the number of threads on both the supplier and consumer are increased,
the transaction rate also increased. In the following graph, a transaction is defined
as a queued replication record that is sent over, in this case an ldap_modify, to the
supplier. The queued replication records (ldap_modify) are run with replication in
a pending state. The replication state is then changed to resume, which starts the
replication process.

Note: As the number of threads increases, so does the CPU usage on both supplier
and consumer systems. Adjust this attribute as needed based on acceptable
CPU usage and desired throughput.

As the throughput increased, the CPU consumption on both the supplier and
consumer increased. The CPU cost per transaction on the consumer increased
slightly when adding threads, as there were more threads to manage.

Replication context cache size
The replication context cache size (ibm-slapdReplContextCacheSize) is an attribute
that specifies, in bytes, the size in memory that is allocated to cache updates to be
replicated. The default setting is 100,000 bytes. This attribute cannot be updated
dynamically.

Figure 9. Number of replication threads

60 Performance Tuning and Capacity Planning Guide

Replication ready size limit
The replication ready size limit (environment variable
IBMSLAPD_REPL_READY_SIZE_LIMIT) controls the size of the queues of
replication operations from the list of updates still to be replicated. The default size
is 10. There is one queue per connection to a given replica. Related updates (for
example, modifications or children of new entries) will be placed in the same
queue. If the size of this queue exceeds the specified size limit, the main replication
thread waits for the queue size to get below the limit again. This prevents the main
replication thread from using too much CPU determining dependencies between
the updates. In testing, the size of this queue was varied from 1 entry up to 200
entries. Although an increase in raw throughput was not evident, CPU savings
were realized at certain settings of this parameter. The following chart displays
throughput normalized to 100% CPU. Absolute throughput did not change in this
test. A larger number in this graph means less CPU cost per transaction. In this
graph a transaction is defined as a queued replication record (ldap_modify) that is
sent to the supplier.

Figure 10. Replication context cache size

Chapter 6. IBM Tivoli Directory Server features 61

Tuning Tivoli Directory Server audit log
The Tivoli Directory Server's audit logging feature significantly slows down Tivoli
Directory Server performance, depending upon which audit logging features are
turned on. If not required, it is advisable to turn off all audit logging features. The
Tivoli Directory Server instance must be running for which a user want to disable
the audit. To check the status of the audit logging feature, run the ldapsearch
command of the following format:
idsldapsearch -p <port> -D <adminDN> -w <adminPwd> -s base \

-b "cn=audit,cn=log management,cn=configuration" objectclass=* ibm-audit
cn=Audit, cn=Log Management, cn=Configuration
ibm-audit=false

where ibm-audit=false indicates that audit logging is off. If this value is true, to
set the value to false for the ibm-audit attribute, run the ldapmodify command of
the following format:
idsldapmodify -p <port> -D <adminDN> -w <adminPwd>
dn: cn=Audit, cn=Log Management, cn=Configuration
changetype: modify
replace: ibm-audit
ibm-audit: false

IBM Directory Proxy Server tuning
IBM Directory Proxy Server can be used in environments where the size of the
data store exceeds the processing power and physical capacity of a single machine.
Directory sizes greater than 40 M entries are candidates for a distributed directory
environment. A proxy server gives customers the ability to distribute data across
multiple backend servers.

Figure 11. Replication ready size limit

62 Performance Tuning and Capacity Planning Guide

Throughput performance of a proxy server can be affected by the size of the
connection pool. This is a parameter configured on the IBM Directory Proxy server.
For best results, the following guidelines to set an appropriate connection pool size
must be followed:
v Configure more than one connection to the back-end server.
v Limit the connection pool size to the number of connections the operating

system can support. The connection pool is a static pool of connections that the
proxy server sets up during the proxy server startup. The operating system
imposes a limit on the number of open file descriptors. The connection pool size
should be less than this limit.

v Ensure that the connection pool size is less than the number of database
connections configured with the back-end server, keeping a buffer for replication
and changelog.

For better performance, all back-end servers and the proxy server should share the
same stash files.

Monitoring performance
The ldapsearch command can be used to monitor performance, as shown in the
following sections.

ldapsearch with "cn=monitor"
The following ldapsearch command uses "cn=monitor".
ldapsearch -h ldap_host -s base -b cn=monitor objectclass=*

where ldap_host is the name of the LDAP host.

The monitor search returns some of the following attributes of the server:

cn=monitor

version=IBM Tivoli Directory, Version 6.3

total connections
The total number of connections since the server was started.

current connections
The number of active connections.

maxconnections
The maximum number of active connections allowed.

writewaiters
The number of threads sending data back to the client.

readwaiters
The number of threads reading data from the client.

livethreads
The number of worker threads being used by the server.

filter_cache_size
The maximum number of filters allowed in the cache.

filter_cache_current
The number of filters currently in the cache.

Chapter 6. IBM Tivoli Directory Server features 63

filter_cache_hit
The number of filters retrieved from the cache rather than being resolved
in DB2.

filter_cache_miss
The number of filters that were not found in the cache that then needed to
be resolved by DB2.

filter_cache_bypass_limit
Search filters that return more entries than this limit are not cached.

entry_cache_size
The maximum number of entries allowed in the cache.

entry_cache_current
The number of entries currently in the cache.

entry_cache_hit
The number of entries that were retrieved from the cache.

entry_cache_miss
The number of entries that were not found in the cache that then needed
to be retrieved from DB2.

acl_cache
A Boolean value indicating that the ACL cache is active (TRUE) or inactive
(FALSE).

acl_cache_size
The maximum number of entries in the ACL cache.

currenttime
The current time on the server. The current time is in the format:
year month day hour:minutes:seconds GMT

Note: If expressed in local time the format is
day month date hour:minutes:seconds timezone year

starttime
The time the server was started. The start time is in the format:
year month day hour:minutes:seconds GMT

Note: If expressed in local time the format is
day month date hour:minutes:seconds timezone year

en_currentregs
The current number of client registrations for event notification.

en_notificationssent
The total number of event notifications sent to clients since the server was
started.

The following attributes are for operation counts:

bindsrequested
The number of bind operations requested since the server was started.

bindscompleted
The number of bind operations completed since the server was started.

unbindsrequested
The number of unbind operations requested since the server was started.

64 Performance Tuning and Capacity Planning Guide

unbindscompleted
The number of unbind operations completed since the server was started.

addsrequested
The number of add operations requested since the server was started.

addscompleted
The number of add operations completed since the server was started.

deletesrequested
The number of delete operations requested since the server was started.

deletescompleted
The number of delete operations completed since the server was started.

modrdnsrequested
The number of modify RDN operations requested since the server was
started.

modrdnscompleted
The number of modify RDN operations completed since the server was
started.

modifiesrequested
The number of modify operations requested since the server was started.

modifiescompleted
The number of modify operations completed since the server was started.

comparesrequested
The number of compare operations requested since the server was started.

comparescompleted
The number of compare operations completed since the server was started.

abandonsrequested
The number of abandon operations requested since the server was started.

abandonscompleted
The number of abandon operations completed since the server was started.

extopsrequested
The number of extended operations requested since the server was started.

extopscompleted
The number of extended operations completed since the server was
started.

unknownopsrequested
The number of unknown operations requested since the server was started.

unknownopscompleted
The number of unknown operations completed since the server was
started. Unrecognized operations are rejected with a result message to the
client including the LDAP_UNWILLING_TO_PERFORM result code.

opsinitiated
The number of initiated requests since the server was started.

opscompleted
The number of completed requests since the server was started.

entriessent
The number of entries sent by the server since the server was started.

Chapter 6. IBM Tivoli Directory Server features 65

searchesrequested
The number of initiated searches since the server was started.

searchescompleted
The number of completed searches since the server was started.

The following attributes are for server logging counts:

slapderrorlog_messages
The number of server messages recorded since the server was started or
since a reset was performed.

slapdclierrors_messages
The number of DB2 error messages recorded since the server was started
or since a reset was performed.

auditlog_messages
The number of audit messages recorded since the server was started or
since a reset was performed.

auditlog_failedop_messages
The number of failed operation messages recorded since the server was
started or since a reset was performed.

The following attributes are for connection type counts:

total_ssl_connections
The total number of SSL connections since the server was started.

total_tls_connections
The total number of TLS connections since the server was started.

The following attributes are for tracing:

trace_enabled
The current trace value for the server. TRUE, if collecting trace data,
FALSE, if not collecting trace data.

trace_message_level
The current ldap_debug value for the server. The value is in hexadecimal
form, for example:
0x0=0
0xffff=65535

trace_message_log
The current LDAP_DEBUG_FILE environment variable setting for the
server.

The following attributes are for denial of service prevention:

available_workers
The number of worker threads available for work.

current_workqueue_size
The current depth of the work queue.

largest_workqueue_size
The largest size that the work queue has ever reached.

idle_connections_closed
The number of idle connections closed by the Automatic Connection
Cleaner.

66 Performance Tuning and Capacity Planning Guide

auto_connection_cleaner_run
The number of times that the Automatic Connection Cleaner has run.

The following attribute is for alias dereference processing:

bypass_deref_aliases
The server runtime value that indicates if alias processing can be bypassed.
It displays TRUE if no alias object exists in the directory, and FALSE if at
least one alias object exists in the directory.

The following attributes are for the attribute cache:

cached_attribute_total_size
The amount of memory used by the directory attribute cache, in kilobytes.
This number includes additional memory used to manage the cache that is
not charged to the individual attribute caches. Consequently, this total is
larger than the sum of the memory used by all the individual attribute
caches.

cached_attribute_configured_size
The maximum amount of memory, in kilobytes, that is enabled to be used
by the directory attribute cache.

cached_attribute_hit
The number of times the attribute has been used in a filter that could be
processed by the attribute cache. The value is reported as follows:
cached_attribute_hit=attrname:#####

cached_attribute_size
The amount of memory used for this attribute in the attribute cache. This
value is reported in kilobytes as follows:
cached_attribute_size=attrname:######

cached_attribute_candidate_hit
A list of up to ten most frequently used noncached attributes that have
been used in a filter that could have been processed by the directory
attribute cache if all of the attributes used in the filter had been cached.
The value is reported as follows:
cached_attribute_candidate_hit=attrname:#####

You can use this list to help you decide which attributes you want to
cache. Typically, you want to put a limited number of attributes into the
attribute cache because of memory constraints.

Examples
The following sections show examples of using values returned by the ldapsearch
command with "cn=monitor" to calculate the throughput of the server and the
number of add operations completed on the server in a certain timeframe.

Throughput example: The following example shows how to calculate the
throughput of the server by monitoring the server statistic called opscompleted,
which is the number of operations completed since the LDAP server started.

Suppose the values for the opscompleted attribute obtained by issuing two
ldapsearch commands to monitor the performance statistics, one at time t1 and the
other at a later time t2, were opscompleted (t1) and opscompleted (t2). The average
throughput at the server during the interval between t1 and t2 can be calculated
as:

Chapter 6. IBM Tivoli Directory Server features 67

(opscompleted(t2) - opscompleted(t1) - 3)/(t2 -t1)

(3 is subtracted to account for the number of operations performed by the
ldapsearch command itself.)

Workload example: The monitor attributes can be used to characterize the
workload, similar to the throughput example but split out by type of operation.
For example, you can calculate the number of add operations that were completed
in a certain amount of time.

Suppose the values for the addscompleted attribute obtained by issuing two
ldapsearch commands to monitor the performance statistics, one at time t1 and the
other at a later time t2, were addscompleted (t1) and addscompleted (t2). The
number of add operations completed on the server during the interval between t1
and t2 can be calculated as:
(addscompleted(t2) - addscompleted(t1) /(t2 -t1)

Similar calculations can be done for other operations, such as searchescompleted,
bindscompleted, deletescompleted, and modifiescompleted.

ldapsearch with "cn=workers,cn=monitor"
An administrator can run a search using "cn=workers,cn=monitor" to get
information about what worker threads are doing and when they started doing it.
ldapsearch -D <adminDN> -w <adminpw> -b cn=workers,cn=monitor -s base objectclass=*

This information is most useful when a server is performing poorly or not
functioning as expected. It should be used only when needed to give insight into
what the server is currently doing or not doing.

The "cn=workers, cn=monitor" search returns detailed activity information only if
auditing is turned on. If auditing is not on, "cn=workers, cn=monitor" returns only
thread information for each of the workers.

Attention: The "cn=workers,cn=monitor" search suspends all server activity until
it is completed. For this reason, a warning should be issued from any application
before issuing this feature. The response time for this command will increase as the
number of server connections and active workers increase.

For more information, see the IBM Tivoli Directory Server Version 6.3 Administration
Guide.

ldapsearch with "cn=connections,cn=monitor"
An administrator can run a search using "cn=connections,cn=monitor" to get
information about server connections:
ldapsearch -D<adminDN> -w <adminPW> -h <servername> -p <portnumber>

-b cn=connections,cn=monitor -s base objectclass=*

This command returns information in the following format:
cn=connections,cn=monitor
connection=1632 : 9.41.21.31 : 2002-10-05 19:18:21 GMT : 1 : 1 : CN=ADMIN : :
connection=1487 : 127.0.0.1 : 2002-10-05 19:17:01 GMT : 1 : 1 : CN=ADMIN : :

Note: If appropriate, an SSL or a TLS indicator is added on each connection.

68 Performance Tuning and Capacity Planning Guide

For more information, see the IBM Tivoli Directory Server Version 6.3 Administration
Guide.

ldapsearch with "cn=changelog,cn=monitor"
You can run a search using "cn=changelog,cn=monitor" to obtain information about
the changelog attribute cache. (See “When to configure Tivoli Directory Server
change log” for information about the change log.) The command returns the
following information:

cached_attribute_total_size
The amount of memory used by the changelog attribute cache, in kilobytes.
This number includes additional memory used to manage the cache that is
not charged to the individual attribute caches. Consequently, this total is
larger than the sum of the memory used by all the individual attribute
caches.

cached_attribute_configured_size
The maximum amount of memory, in kilobytes, that is enabled to be used
by the changelog attribute cache

cached_attribute_hit
The number of times the attribute has been used in a filter that could be
processed by the changelog attribute cache. The value is reported as
follows:
cached_attribute_hit=attrname:#####

cached_attribute_size
The amount of memory used for this attribute in the changelog attribute
cache. This value is reported in kilobytes as follows:
cached_attribute_size=attrname:######

cached_attribute_candidate_hit
A list of up to ten most frequently used noncached attributes that have
been used in a filter that could have been processed by the changelog
attribute cache if all of the attributes used in the filter had been cached.
The value is reported as follows:
cached_attribute_candidate_hit=attrname:#####

You can use this list to help you decide which attributes you want to
cache. Typically, you want to put a limited number of attributes into the
attribute cache because of memory constraints.

When to configure Tivoli Directory Server change log
IBM Tivoli Directory Server has a function called change log that results in a
significantly slows down LDAP update performance. The change log function
should be configured only if needed.

The change log function causes all updates to LDAP to be recorded in a separate
change log DB2 database that is, a different database from the one used to hold the
LDAP server's directory information tree (DIT). The change log database can be
used by other applications to query and track LDAP updates. The change log
function is disabled by default.

One way to check for existence of the change log function is to look for the suffix
CN=CHANGELOG. If it exists, the change log function is enabled.

Chapter 6. IBM Tivoli Directory Server features 69

70 Performance Tuning and Capacity Planning Guide

Chapter 7. Capacity Planning

There are several hardware decisions to be made before deploying IBM Tivoli
Directory Server. Hardware resources to consider are:
v Hard disk
v Memory
v CPUs

IBM Tivoli Directory Server can perform differently for various hardware
configurations, and it is important to understand which hardware configurations
cause the directory server to perform best.

Several tuning measures were taken to find the best settings under which the
server provides best results. Tuning factors tested were:

IBM Tivoli Directory Server tuning
LDAP Entry cache

DB2 tuning

v DB2 buffer pools
– LDAP bufferpool
– IBMDEFAULT bufferpool

v Optimization and organization (reorgchk and reorg)
v Other DB2 configuration parameters
v Backing up and restoring the database (backup and restore)
v Splitting of database

The capacity planning information in this chapter includes results observed from
data loading (using the bulkload utility) and running specific benchmarks on a
variety of AIX systems.

The results provided were obtained through the following methods: Two types of
LDIF files were used. The first type of LDIF file contains small entries with a flat
tree structure. The other type of LDIF file contains larger entry sizes as well as a
deeper tree structure. LDIF files with 100,000 and 1 million entries were created.
The first type of LDIF file was used only for search operations. The second type
was used for both searches and updates. In each case, a directory server instance is
created on the system. The LDIF file is loaded into the database and the recording
are made. Operating system information and information related to the directory
server instance is collected at intervals throughout the load and the performance
test run.

Note: The statistics reported here are specific to the particular hardware setups
used and were generated in a lab environment. These results might not be
reproducible in other environments. The results reported here should be
used only as guidelines.

The LDAP server performance was monitored by running various workloads on
different hardware configurations. These workloads were run on a number of AIX
systems.

© Copyright IBM Corp. 2003, 2010 71

Disk requirements
Because large amounts of data are stored in the directory server, it would be useful
to have a formula that determines the capacity of the hard disk that is required to
store the complete data. Also useful is a measure of how much CPU, memory, and
time is required to load this large amount of data into the directory server from an
LDIF file. The two most important factors here are:
v Time required to load the data into the directory server
v Space required to store the data on the hard disk

Bulkload time and space information
Two types of LDIF files were used to gather data statistics. The first is a flat
structured LDIF file with small entries. The second is a deeper tree with larger
entries. There are no access control lists (ACLs) or groups in either LDIF file.

Example small entry, approximately 415 bytes:
dn: cn=Joline Hickey, ou=Accounting, o=IBM.com
objectClass: top
objectClass: person
objectClass: organizationalPerson
cn: Joline Hickey
sn: Hickey
description: Joline_Hickey
facsimileTelephoneNumber: +1 71 631-7308
l: Palo Alto
ou: Accounting
postalAddress: IBM.com$Accounting$Dept # 363$Room # 890
telephoneNumber: +1 408 995-7674
title: Supreme Accounting Mascot
userPassword: yekciHenil
seeAlso: cn=Joline

Example large entry, approximately 10,510 bytes:
dn: mdsListName=List219, mdsContainerName=container22, mdsUID=22, mdso=393, mdsc=C1,
dc=IBM, dc=com
objectclass: MDSBlobList
mdsListName: List219
mdsHeadTitle: Listen Titel 9
mdsdata:: XXX
XXXXXXXXXXXXXXXXXXXXXX
XX
XX
XXXXXXXXXXXXXXXXXXXXXX
XX
XX
XXXXXXXXXXXXXXXXXXXXXX
...
XXX
XXXXXXXXXX XX
XXXXXXXXXXXXXXXXXXXXX
XXX
XXXXXXXXXX
XXX
XXX
XXXXXXXXXXXXXXXXXXXX

The attribute “mdsdata” contains binary data. Binary data is not stored in attribute
tables and has a big impact on total disk space and on parsing and loading times.

72 Performance Tuning and Capacity Planning Guide

Time Information
The following graphs and tables show results from running the bulkload utility
with sizes of 100,000 entries and 1 million entries (for small and large entries). The
bulkload was run in two passes, first the parse and then the load. The information
was collected on an AIX 5.3 system with two 1656 MHz POWER5™ processors and
3792 MB of RAM. No tuning was done on the database settings before running the
bulkload utility. For the smaller entry data, an index for the seeAlso attribute was
added.

Note: The following results were obtained by using the bulkload utility with DB2
v9.x.

Times for bulkload for LDIF files with 100,000 entries

Table 2. Bulkload times for 100,000 entries

Time in seconds Small entries Large entries

Parse time 35 127

Load time 47 128

Total time 82 255

Times for bulkload for LDIF files with 1,000,000 entries

Table 3. Bulkload times for 1,000,000 entries

Time in minutes Small entries Large entries

Parse time 5 25

Load time 8 112

Total time 13 137

Chapter 7. Capacity Planning 73

By comparing the bulkload times for the same LDIF file on two different systems,
the time variations and impact of the hardware can be observed. The following
graph and table show the results for two bulkload runs with the 1,000,000 small
entries LDIF file. The two systems used were of the following specification:

System1
AIX 5.3 with 2 1656 MHz POWER5 processors and 3792 MB of RAM

System2
AIX 6.1 with 2 1499 MHz POWER5 processors and 7967 MB of RAM (for 1
logical partition (LPAR))

Times for bulkload for LDIF file with 1,000,000 small entries

Table 4. Bulkload times for 1,000,000 small entries on two different systems

Time (minutes) System1 System2

Parse time 5 5.12

Load time 8 5.41

Total time 13 10.53

The AIX 5.3 system performed the bulkload parse operation in same time as that
of on AIX 6.1 system, but AIX 5.3 took more time for loading the same amount of
data. The bulkload utility is single threaded, so improvements in time come from
the CPU speed, disk speed of the hardware being used, and memory used.

In general, the parse time increases linearly as the number of entries in the LDIF
file increases. For example, the parse time for 100,000 small entries was 35 seconds
and the parse time for 1,000,000 small entries was roughly 10 times that, or 5
minutes. This is not true for the load times, however. Load time does not increase
linearly with respect to the data set size.

During the parse phase, intermediate files are generated; these files are used in the
load phase. If the input LDIF file is large, more data is written to the intermediate
files. The time increase is mostly in disk I/O, and it can be seen in the results
obtained for the different LDIF files. The average entry parse time per second is
significantly greater for the larger entry size LDIF. For the 100,000 entry LDIF file
with smaller sized entries, an average of 2800 entries were parsed per second. For
the larger sized entries, however, only 780 entries were parsed per second.

Space information
On AIX 5.3 system, the space needed in three different filesystem directories was
calculated for each of the four LDIF files that were created. The first was the space
in the temporary directory used by the parse phase of the bulkload operation. This

74 Performance Tuning and Capacity Planning Guide

can be referred as the parse size. The second is the space needed in the actual
directory where the database is stored. This can be referred as the database size.
The third is the space needed to hold a backup of the database. This can be
referred as the backup size. The charts displayed below show these statistics for
both the small and large entry files, and for 100,000, 1,000,000 entries along with
the size of the corresponding LDIF file.

Space used for bulkload for LDIF file with 100,000 entries

Table 5. Bulkload space for 100,000 entries

Size in MB Small entries Large entries

LDIF file size in MB 41 859

Parse space in MB 139 927

Database space in MB 304 1213

Backup space in MB 320 1233

Space used for bulkload for LDIF file with 1,000,000 entries

Table 6. Bulkload space for 1,000,000 entries

Size in MB Small entries Large entries

LDIF size in MB 407 8597

Parse space in MB 1405 9294

Database space in MB 2779 11864

Backup space in MB 2793 11866

Chapter 7. Capacity Planning 75

From this data, you can generalize the amount of space needed per entry for the
different types of entries. For the smaller entries about 3 KB of space per entry is
needed for database storage. For the larger entries, the requirement increases to 12
KB per entry.

The space needed to back up the database is roughly equivalent to the space
needed for the database itself. The space needed for the parse phase of the
bulkload is about 3.5 times the size of the LDIF file for the smaller entries (or 1.5
KB per entry), and about 1.2 times the size of the LDIF file for the larger entries (or
9.5 KB per entry).

Memory requirements
The runtime memory requirements for the Tivoli Directory Server and the requisite
product, IBM DB2, vary with number of users in the directory server, the size of
the directory server caches, and the size of the DB2 buffer pools. When the LDAP
server is tuned for performance gain, it is generally done by tuning the size of the
LDAP caches and setting the DB2 buffer pools to AUTOMATIC. However, while
doing this the memory capacity of the system must be considered. Allocating a
very large amount for the caches will result in an increase in the overall memory
requirement. Therefore, cache sizes must be allocated carefully. See Chapter 2,
“IBM Tivoli Directory Server tuning,” on page 7 and Chapter 3, “Tuning DB2 and
LDAP caches,” on page 23 for information.

CPU requirements
To ensure that the CPU is used at its optimum level, here are some guidelines:
v Ensuring that the required data is available in the caches results in low disk

accesses, which are generally slower than memory accesses. This decreases the
time that the CPU must wait for input/output to occur.

v Enabling simultaneous multithreading (SMT) on systems that are capable of
hyperthreading increases the processing capability and the application
throughput. See “Simultaneous multithreading” on page 79 for more
information.

v Systems with fewer CPUs but greater CPU frequency work more efficiently than
systems with more CPUs but lower CPU frequency. For example, a system with
2 processors with 1200 MHz speed performs better than a system with 4
processors with 600 MHz speed.

CPU scaling comparison for throughput (searches and
updates)

The processor plays an important role in the overall performance of any
application. There are two important factors for a processor that add to the overall
performance:
v Number of processors
v Processor speed

Scaling of throughput for varying number of processors
To determine the effect of the number of processors on the overall performance of
the directory server, all the hardware configurations were kept common, except for
the number of processors. The workloads were run on 3 different AIX 5.3 systems
with 1, 2, and 4 POWER® V processors (1499 MHz) and 6144 MB RAM.

76 Performance Tuning and Capacity Planning Guide

On each system, the directory server was loaded with 100,000 entries. The same
update and search workload was run on all the systems. The update workload
consisted of modify and modrdn operations, while the search workload consisted
of rootdse searches along with subtree searches. The entry cache size was set to the
default value of 25 KB. The results for the search and update workloads with
varied number of processors are shown in the following sections.

Search throughput: The following table shows the throughput figures for a
directory server with 100,000 entries:

Table 7. Search throughput with 1, 2, and 4 CPUs

Number of
CPUs Throughput

CPU User
time

CPU system
time

CPU idle
time

CPU wait
time

1 CPU 11129.1 65 35 0 0

2 CPUs 14899.9 59 34 7 0

4 CPUs 18199.5 37 23 40 0

The results for a dual processor configuration are far better than the results for a
computer with a single processor. Best results can be obtained using a
multiprocessor computer.

The following graph shows the scaling of the search throughput across varying
number of processors.

Update throughput: The following table shows the throughput figures for a
directory server loaded with 100,000 entries:

Table 8. Update throughput for 1, 2, and 4 CPUs

Number of
CPUs Throughput

CPU User
time

CPU system
time

CPU idle
time CPU wait time

1 CPU 383.5 65 35 0 0

2 CPUs 398.7 59 34 7 0

3 CPUs 400.4 37 23 40 0

The following graph shows the scaling of the update throughput with varying
numbers of processors.

Chapter 7. Capacity Planning 77

The SMT option can be used to simulate the computer having more processors
than are physically present. For more information about SMT, see “Simultaneous
multithreading” on page 79.

Splitting the database across multiple disks
The tests showed that when the database is split across two different disks instead
of residing on one disk, the throughput achieved is doubled. CPU utilization is one
important factor that is responsible for this. The following tables show the effect on
CPU utilization of splitting the database across two hard disks.

Effect on search throughput of splitting the database across two hard disks

Table 9. Search throughput with one and two hard disks

Database Throughput IB LB CPU % Idle % Wait %
AVM
(MB)

Memory
(KB)

Normal 260 95 74 23 68 8 191 389044

Split 416 95 74 46 37 16 179 378464

The update workload consists of search and modify operations on a directory with
1 million entries. The computer is a AIX 5.3 system with 2 POWER V processors
(1499 MHz) and 6144 MB RAM. The CPU idle % is reduced to half when the
database is split across two different disks. The results can be further enhanced by
using a high speed hard disk drive to save I/O time as well.

Effect on update throughput of splitting the database across two hard disks

Table 10. Update throughput with one and two hard disks

Database Throughput IB LB CPU % Idle % Wait %
AVM
(MB)

Memory
(KB)

Normal 118 92 73 23 68 9 496 400736

Split 237 93 72 47 36 16 451 398960

For information about splitting the database across multiple disks, see the redpaper
entitled "Performance Tuning for IBM Tivoli Directory Server."

78 Performance Tuning and Capacity Planning Guide

Simultaneous multithreading
Simultaneous multithreading is a processor design that combines hardware
multithreading with superscalar processor technology to allow multiple threads to
issue instructions each cycle. Unlike other hardware multithreaded architectures in
which only a single hardware context (or thread) is active on any given cycle, SMT
permits all thread contexts to simultaneously compete for and share processor
resources. Unlike conventional superscalar processors, which suffer from a lack of
per-thread instruction-level parallelism, simultaneous multithreading uses multiple
threads to compensate for low single-thread instruction-level parallelism.
Simultaneous multithreading allows multiple threads to run different instructions
in the same clock cycle, using the execution units that the first thread left spare.
This is done without great changes to the basic processor architecture: the main
additions needed are the ability to fetch instructions from multiple threads in a
cycle, and a larger register file to hold data from multiple threads. The number of
concurrent threads can be decided by the chip designers, but practical restrictions
on chip complexity usually limit the number to 2, 4 or sometimes 8 concurrent
threads.

The performance consequence is significantly higher instruction throughput and
program speedups on a variety of workloads that include commercial databases,
web servers and scientific applications in both multiprogrammed and parallel
environments.

SMT on AIX FAQs
How would I know if my system is capable of using simultaneous
multithreading)?

Your system is capable of SMT if it is a POWER5-based system running
AIX 5L™ Version 5.3.

How would I know if SMT is enabled for my system?
If you run the smtctl command without any options, the response tells you
if SMT is enabled or not.

Is SMT supported for the 32-bit kernel?
Yes, SMT is supported for both 32-bit and 64-bit kernel.

How do I enable or disable SMT?
You can enable or disable SMT by running the smtctl command. The
following is the syntax:
smtctl [-m off | on [-w boot | now]]

The following options are available:

-m off Sets SMT mode to disabled.

-m on Sets SMT mode to enabled.

-w boot
Makes the SMT mode change effective on next and subsequent
restarts if you run the bosboot command before the next system
restart.

-w now
Makes the SMT mode change immediately but the change does not
persist across restart.

Chapter 7. Capacity Planning 79

If neither the -w boot or the -w now options are specified, the mode
change is made immediately. It persists across subsequent restarts if you
run the bosboot command before the next system restart.

80 Performance Tuning and Capacity Planning Guide

Appendix A. Workload description

The performance tests are performed for base search and mixed job (a mixture of
update, search, and compare operations). Each scenario consists of two phases, a
warm-up phase and a run phase. During the warm-up phase, the searches
primarily request entries that are not in the LDAP caches, most of these requests
require interaction with the DB2 database. For all the measurements reported in
this document, warm-up phase consisted of running all queries at least once;
consequently, during the run phase all entries requested are potentially already in
LDAP caches in memory if the caches are large enough to hold all of them. Thus
the warm- up phase and the run phase comprise two distinctly different
workloads.

During the run phase of base search job and mixed job, a number of client threads
issue search requests to the IBM Tivoli Directory Server from predetermined scripts
(clients). The scripts include a number of different kinds of operations, including
base searches, update, and compare operations that return multiple entries per
request. The client threads run through their scripts continuously for ten minutes.
Throughput is measured on the server during each minute interval, and then each
client starts over at the beginning of its script. Each ten minute interval is referred
to as a run. The server is not restarted between runs.

© Copyright IBM Corp. 2003, 2010 81

82 Performance Tuning and Capacity Planning Guide

Appendix B. Modifying TCP/IP settings

When the LDAP server is protected behind a firewall, socket connections might
time out resulting in intermittent authentication failures. The socket connection
failures are due to a mismatch between the firewall’s connection timeout setting
and the operating system’s frequency of sending keep alive network packets to
keep the connection alive. If socket connection failures occur, decrease the
operating system network parameters that control the time between sending keep
alive packets, sometimes called the keep alive interval.

The name of the parameters that control keep alive frequency vary with each
operating system. Set the keep alive interval to be less than the firewall’s
connection timeout. If unsure of the firewall setting try two minutes.

Additionally, closed TCP/IP connections between the client and the LDAP server
are cleaned at system-specified intervals. In environments where the connections
are opened or closed at a high frequency, this can degrade LDAP server
performance. To shorten the cleaning intervals, modify the registry keys.

Do the following to modify the TCP/IP settings on an AIX platform:
1. Use the following command

no -o <attributename>=<value>

to set the following attributes and values for performance tuning:

tcp_keepidle
Specifies the length of time to keep the connection active. This value is
defined in 1/2 second units, and defaults to 14,400 (7200 seconds or 2
hours). The tcp_keepidle parameter is a runtime attribute. Reduce
tcp_keepidle to be less than the firewall’s connection timeout. If unsure,
set tcp_keepidle to 240 (2 minutes).

tcp_keepinit
Sets the initial timeout value for a tcp connection. This value is defined
in 1/2 second units, and defaults to 150 (75 seconds). It can be changed
to any value with the -o option. The tcp_keepinit parameter is a
runtime attribute.

tcp_keepintvl
Specifies the interval between packets sent to validate the connection.
This value is defined in 1/2 second units, and defaults to 150 (75
seconds). The tcp_keepintvl parameter is a runtime attribute.

Do the following to modify the registry keys on a Windows platform:
1. Type the following at a command prompt to open Registry Editor:

regedit

2. Go to HKey_Local_Machine\System\CurrentControlSet\Services\Tcpip\
Parameters.

3. Add TcpTimedWaitDelay entry (if not already in the registry).
4. Set the DWORD value to 1e for 30 seconds.
5. Add StrictTimeWaitSeqCheck entry (if not already in the registry).
6. Set DWORD Value to 1

© Copyright IBM Corp. 2003, 2010 83

7. Reboot the machine.

Note: This applies to both client and server machines.

84 Performance Tuning and Capacity Planning Guide

Appendix C. Platform configurations

The performance tuning examples in this guide use the following platform
configurations:
v

– System running SLAMD server
- One 2x3.2 GHz, 2048 MB RAM, Intel® PRO/100 VE
- RHEL AS 4

– System running SLAMD clients
- Five 2x3.2 GHz, 2048 MB RAM, Intel PRO/100 VE
- RHEL 5

v Server
– 4-Way 1.6 GHz, System p Model IBM 9118-575 with 1 or 4 processors active,

31744 MB RAM.
– IBM 10/100 Ethernet Adapter.
– AIX 5.3 ML 13
– IBM Tivoli Directory Server Version 6.3
– AIXTHREAD_SCOPE=S
– MALLOCTYPE=buckets
– NODISCLAIM=true (1way).
– RDBM_CACHE_SIZE=460000 except where noted.
– RDBM_FCACHE_SIZE=75000 except where noted.
– RDBM_CACHE_BYPASS_LIMIT=100 except where noted.
– Necessary Indexes created (for attribute seeAlso).
– No ACLs were set. By default, anyone can search and compare. The directory

administrator can update.
v DB2 v 9.5

– maxlocks 100 sortheap 2500 dbheap 5000 ibmdefaultbp 20000 (4K pages)
ldapbp 9800 (32K pages)

– logfilsiz 2048, logprimary 6
v Miscellaneous

– Caches were warmed up by running all scripts once.
– Measurements were taken using 15 threads per client except where noted.
– DB2 log files are not on the same disk as the containers.

© Copyright IBM Corp. 2003, 2010 85

86 Performance Tuning and Capacity Planning Guide

Appendix D. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2003, 2010 87

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

If you are viewing this information in softcopy form, the photographs and color
illustrations might not be displayed.

88 Performance Tuning and Capacity Planning Guide

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at "Copyright and trademark information" at www.ibm.com/legal/
copytrade.shtml.

Adobe, the Adobe logo, PostScript®, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Cell Broadband Engine™ and Cell/B.E. are trademarks of Sony Computer
Entertainment, Inc., in the United States, other countries, or both and is used under
license therefrom.

Intel, Intel logo, Intel Inside®, Intel Inside logo, Intel Centrino®, Intel Centrino logo,
Celeron®, Intel Xeon®, Intel SpeedStep®, Itanium, and Pentium® are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

IT Infrastructure Library® is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

ITIL® is a registered trademark, and a registered community trademark of the
Office of Government Commerce, and is registered in the U.S. Patent and
Trademark Office.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft®, Windows, Windows NT®, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

Appendix D. Notices 89

www.ibm.com/legal/copytrade.shtml
www.ibm.com/legal/copytrade.shtml

90 Performance Tuning and Capacity Planning Guide

Index

A
accessibility vii
ACL cache

description 14
AIX environment variables

AIXTHREAD_SCOPE 52
MALLOCTYPE 51
NODISCLAIM 52
viewing 52

AIX, enabling large files 51
AIXTHREAD_SCOPE, setting 52
APPLHEAPZ 47
attribute cache

adding attributes to
using command line 17

complex filters resolved by 8
configuring 16

using command line 17
determining attributes for 8
language tags 8
processing queries 7
simple filters resolved by 8

B
books

see publications v, vi
bulkload 57

-k option 57

C
cache configuration variables, setting

using command line 18
using Web Administration Tool 18

cache entry sizes, determining 15
caches, LDAP

configuration variables 15
description 3
directory size 21
listed 2
tuning to improve performance 7

change log
checking for existence of 69
use of 69

components
IBM Tivoli Directory Server 1

configurations used
client 85
DB2 85
miscellaneous 85
server 85

conventions
typeface viii

D
DB2 buffer pools 2

and directory size 21

DB2 buffer pools (continued)
IBMDEFAULTBP 2
LDAPBP 2
tuning considerations 24
tuning overview 23

DB2 configuration parameters
determining current settings 47
setting 47

DB2 selectivity 46
DB2 transaction log size tuning 27
DB2 tuning

backup command 49
buffer pools 24
database organization 41
optimization and organization

overview 40
optimizing

overview 40
using command line 40
using Configuration Tool 40

restore command 49
directory names, notation ix
directory size

measuring effect on performance 20
size of DB2 buffer pools 21
size of LDAP caches 21

disk speed, improving 55

E
education

see Tivoli technical training vii
entry cache

description 13
determining best size for 13
determining entry size 15

environment variables, notation ix

F
filter cache

determining best size for 11
determining entry size 15
processing queries 11
size with updates 12

filter cache bypass limit, determining
best 13

I
IBM Tivoli Directory Server

components 1
IBM Tivoli Directory Server features

bulkload 57
change log 69
monitoring performance 63
Proxy server 62
replication 59

IBMDEFAULTBP
description 2

idsrunstats command 40
improving disk speed 55
indexes, DB2 45

L
large files, enabling on AIX 51
LDAP attribute cache 7
LDAP caches 2
LDAP filter cache 11
LDAPBP

description 2
ldapsearch

"cn=changelog,cn=monitor" 69
"cn=connections,cn=monitor" 68
"cn=monitor" 63
"cn=workers,cn=monitor" 68

LOGFILSIZ 47

M
MALLOCTYPE, setting 51
manuals

see publications v, vi
monitoring performance 63

N
NODISCLAIM, setting 52
notation

environment variables ix
path names ix
typeface ix

O
online publications

accessing vi
ordering publications vii

P
path names, notation ix
performance, monitoring 63
Proxy server 62
publications v

accessing online vi
ordering vii

R
reorg command 43
reorgchk command 41
replication 59

context cache size 60
number of replication threads 60
ready size limit 61

© Copyright IBM Corp. 2003, 2010 91

S
settings

ibm-slapdIdleTimeOut 19
ibm-

slapdMaxEventsPerConnection 19
ibm-slapdMaxEventsTotal 19
ibm-slapdMaxNumOfTransactions 19
ibm-slapdMaxOpPerTransaction 19
ibm-

slapdMaxTimeLimitOfTransactions 19
ibm-

slapdPagedResAllowNonAdmin 19
ibm-slapdPagedResLmt 19
ibm-slapdSizeLimit 19
ibm-slapdSortKeyLimit 19
ibm-

slapdSortSrchAllowNonAdmin 19
ibm-slapdTimeLimit 19

SPINLOOPTIME, setting 52

T
TCP/IP settings

modifying 83
tips for improving performance

disk speed 55
generic 5

Tivoli software information center vi
Tivoli technical training vii
Tivoli user groups vii
training, Tivoli technical vii
tuning

audit log 62
database connections 28
DB2 transaction log size 27
LDAP 1
overview 1

tuning database connections 28
tuning, DB2 3
tuning, LDAP

overview 3
tips 5

typeface conventions viii

U
user groups, Tivoli vii

V
variables, notation for ix

W
Workload description 81

92 Performance Tuning and Capacity Planning Guide

����

Printed in USA

SC27-2748-00

	Contents
	About this book
	Intended audience for this book
	Publications
	IBM Tivoli Directory Server version 6.3 library
	Related publications
	Accessing terminology online
	Accessing publications online
	Ordering publications

	Accessibility
	Tivoli technical training
	Tivoli user groups
	Support information
	Conventions used in this book
	Typeface conventions
	Operating system-dependent variables and paths

	Chapter 1. IBM Tivoli Directory Server tuning general overview
	IBM Tivoli Directory Server application components
	LDAP caches and DB2 buffer pools
	LDAP caches
	DB2 buffer pools

	IBM Tivoli Directory Server tuning overview
	DB2 tuning overview
	Performance impact due to multiple password policy
	Enforcing minimum ulimits
	Generic LDAP application tips

	Chapter 2. IBM Tivoli Directory Server tuning
	LDAP caches
	LDAP attribute cache
	Determining which attributes to cache

	LDAP filter cache
	Filter cache size
	Filter cache size with updates
	Filter cache bypass limits

	Entry cache
	Entry cache size
	Group members cache

	ACL cache

	Measuring cache entry sizes
	LDAP cache configuration variables
	Configuring attribute caching
	Using the Web Administration Tool
	Using the command line

	Setting other LDAP cache configuration variables
	Using the Web Administration Tool
	Using the command line
	Additional settings

	Setting SLAPD_OCHSELECT_USECS
	Directory size

	Chapter 3. Tuning DB2 and LDAP caches
	Tuning DB2 buffer pool
	DB2 buffer pool analysis

	Tuning DB2 transaction log size
	Tuning database connections
	The performance tuning tool (idsperftune)
	Basic tuning
	SYS_MEM_AVL
	Examples

	Advanced tuning
	Examples

	Perftune input file (perftune_input.conf)
	Perftune statistics file (perftune_stat.log)

	The database maintenance tool (idsdbmaint)
	Tablespaces
	DB2 index reorganization
	DB2 row compression
	Tablespace conversion
	Examples

	Optimization and organization (idsrunstats, reorgchk and reorg)
	Optimization
	Viewing DB2 system statistics settings
	Database organization (reorgchk and reorg)
	Performing a reorgchk
	Performing a reorg

	DB2 indexes
	DB2 SELECTIVITY
	Examples

	Other DB2 configuration parameters
	Database backup and restore considerations

	Chapter 4. AIX operating system tuning
	Enabling large files
	Setting MALLOCTYPE
	Setting other environment variables
	Viewing ibmslapd environment variables (AIX operating system only)

	Chapter 5. Hardware tuning
	Disk speed improvements

	Chapter 6. IBM Tivoli Directory Server features
	Bulkload
	Effects of using the -k option

	Replication tuning
	Number of replication threads
	Replication context cache size
	Replication ready size limit

	Tuning Tivoli Directory Server audit log
	IBM Directory Proxy Server tuning
	Monitoring performance
	ldapsearch with "cn=monitor"
	Examples

	ldapsearch with "cn=workers,cn=monitor"
	ldapsearch with "cn=connections,cn=monitor"
	ldapsearch with "cn=changelog,cn=monitor"

	When to configure Tivoli Directory Server change log

	Chapter 7. Capacity Planning
	Disk requirements
	Bulkload time and space information
	Time Information
	Space information

	Memory requirements
	CPU requirements
	CPU scaling comparison for throughput (searches and updates)
	Scaling of throughput for varying number of processors

	Splitting the database across multiple disks

	Simultaneous multithreading
	SMT on AIX FAQs

	Appendix A. Workload description
	Appendix B. Modifying TCP/IP settings
	Appendix C. Platform configurations
	Appendix D. Notices
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

